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Abstract

Text mining is the extraction of important information from a collection of textual data sources.
For instance, text mining can be used to discover related concepts or to categorize previously
unseen documents. In this age of information overload, text mining applications can potentially
yield tremendous benefits to both individuals and organizations. However, the effectiveness of text
mining is limited by the large volume of textual data, as well as its complex and noisy characteristics.
Both of these challenges can be addressed with “dimensionality reduction” (DR).

DR is the process of transforming a large amount of data into a much smaller, less noisy
representation that preserves important relationships from the original data. DR techniques have
been shown to effectively simplify large geometric datasets, but have yet to be adequately evaluated
for textual data. This project evaluated five DR techniques (Principal Components Analysis, Multi-
dimensional Scaling, Isomap, Locally Linear Embedding, and Laplace-Beltrami Diffusion Maps)
from two distinct perspectives.

First, the impact of each DR technique on the ability to automatically perform document
classification on corpuses of scientific abstracts or news articles was measured. For each technique,
the dataset was reduced, then a standard linear, quadratic, or nearest neighbor classifier was used to
assign categories to a test set of documents based upon a labeled training set. Results showed that,
for any fixed number of dimensions used by the classifier, performing any kind of DR almost always
improved classification accuracy compared to using the non-reduced data. Amongst different DR
techniques, Isomap and Multi-dimensional Scaling were best able to reduce the data and eliminate
noise, yielding improved accuracy. This suggests that these textual data sets lie primarily on a
linear manifold for which the more complex non-linear techniques do not have an advantage.

Second, this project examined the impact of each DR technique on the ability to automatically
discover interesting, previously unknown relationships between scientific articles. This process,
known as “Literature-Based Discovery” (LBD), has been previously performed by hand to uncover
significant new information such as novel medical treatments. This project first reduced the data
with some DR technique, and then used computed similarities between documents from disparate
fields such as Chemistry and Physics to identify candidate discoveries. Keywords were extracted
from these candidates and used to formulate web search engine queries for articles which contained
these disparate ideas together. Effectiveness was measured by a novel numerical method which
evaluated the quality of candidates based on the number of search results retrieved. Results suggest
that applying DR to a corpus before performing LBD may be an effective way to improve the quality
of results for this text mining application.
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Chapter 1

Introduction

Individuals, companies, and governments are surrounded by millions of database records, web

pages, communications, and other documents that are potentially relevant, yet in danger of

being overlooked amongst all the other data. This information overload is made all the more

difficult by the great variety of information being considered and by the need to perform

analysis very quickly. For instance, a number of modern Naval missions require the prompt

fusion and accurate interpretation of information from disparate sources. These include

the Maritime Domain Awareness (MDA) mission and the Global War on Terror (GWOT)

mission. These missions are challenging because the information that needs to be fused is not

simply mathematical, like target track information, but information about changing groups

of loosely organized individuals. In this situation, as with many others, the information that

needs to be fused exists primarily as free form text.

The free form nature of this information necessitates the use of text mining methodologies

for analysis. Text mining is the extraction of important information from a collection of

textual data sources. The primary challenge with performing text mining is the complexity

of a document and the process by which this complexity is simplified into a more manageable

representation. This general process, known as dimensionality reduction (DR), has been

studied in many contexts besides that of text mining. Recently, several promising new

techniques for performing this reduction have been proposed, including Isomap [18] and

LDM’s spectral technique [24]. These techniques offer great promise for effectively reducing

vast amounts of information while maintaining the most interesting details, but have yet to
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be adequately evaluated for text mining.

This work evaluates the effectiveness of several methods for dimensionality reduction as

they relate to two distinct text mining applications. First, how dimensionality reduction

impacts the ability of standard algorithms to effectively classify documents among known

categories has been studied. It was theorized that some newer dimensionality reduction

methods which stress local relationships would perform best. Results from classification,

however, contradict this hypothesis. Nonetheless, results did show that many DR techniques

are able to reduce the data such that classification accuracy is improved when comparing

against a classifier that performs no DR but uses the same number of dimensions. In addition,

results showed that many of the DR techniques could produce strong accuracies when using

only a small number of dimensions.

Second, the impact of dimensionality reduction on the ability to automatically uncover

interesting relationships between seemingly unrelated documents was explored. It was the-

orized that the DR methods which worked best on classification may not be the same tech-

niques which excelled at this new task of “literature-based discovery” (LBD). Results sug-

gested that applying DR techniques could result in relationships of higher quality being

uncovered. One of the most effective DR techniques for classification also performed well on

LBD, but it was in turn dominated by a DR method which only performed well on the less

difficult data sets with regards to classification. Together, these results provide some insight

into the best ways to use dimensionality reduction for classification and for LBD.

The next chapter provides brief background information on text mining, DR, and keyword

extraction. In Chapter 3, the approach used to conduct these experiments is outlined.

The algorithm for translating documents into a machine-usable form is detailed, as well

as algorithms for performing dimensionality reduction, classification, and LBD. The data

sets tested and the tools that were implemented to carry out the experiments are detailed

in Chapter 4. Chapter 5 analyzes the results obtained with each classifier and presents

conclusions drawn from those results. Chapter 6 does the same for LBD results. Chapter 7

presents related work. Finally, Chapter 8 describes the overall conclusions of this work as

well as ways that this work could be built upon in the future.
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Chapter 2

Background

Section 2.1 introduces the concept of text mining and explains some of the inherent difficulties

associated with it. Section 2.2 introduces dimensionality reduction as a possible means for

improving such analysis. Finally, Section 2.3 introduces keyword extraction, another text-

based tool that is used by this work for further processing.

2.1 Text Mining and Literature Based Discovery

Text mining is the process of automatically extracting information from unstructured text.

One particular research focus for text mining has been on the development of algorithms to

automatically uncover interesting relationships between documents. Such relationships are

difficult to uncover by hand because of the sheer amount of information that is available.

This task has been referred to by Swanson as literature-based discovery (LBD) [28] and more

recently by Priebe and Solka as automated serendipity [22].

LBD was most famously illustrated by Dr. Don Swanson in 1986 when he discovered

that fish oil could be used to treat Reynaud’s disease [28]. Swanson made the connection

through the process of LBD. First, he started with a disease - Reynaud’s disease. He then

searched the Medline database, a large set of papers focused on the medical field, and

found terms associated with Reynaud’s disease, namely high blood viscosity and platelet

aggregation. Finally, using only the terms associated with Reynaud’s disease, he again

searched the Medline database. This second search showed that fish oil could be used to help



12

control these symptoms, though it was never mentioned as a treatment for Reynaud’s disease.

Since the symptoms were related to both fish oil and the disease, Swanson hypothesized that

fish oil could be used to treat the disease. After further research by medical professionals and

clinical trials, Swanson’s theory was confirmed [14]. Figure 2.1 demonstrates this A-B-C

approach used by Swanson. Swanson termed the publications which bridged the connection

between Reynaud’s disease and fish oil as complementary but disjoint structures (CBD).

Though each focused on a unique thesis, together they led to something interesting that

neither found alone [29].

Figure 2.1: The A-B-C approach which Swanson used for his first successful LBD attempts [14].

The difficulty in finding these connections is a result of a large amount of information

coupled with researchers whose specialties are so focused that it is difficult to port knowledge

from one area of expertise to another [14]. Furthermore, it is an intense undertaking to keep

up with just a single field, let alone the great diversity of new information which appears

every day. For example, the Medline database contains over 13,000,000 publications and over

3,500 new publications are added each day. Unfortunately, automating the extraction of data

from publications is difficult because of their unstructured, natural language representation.

Furthermore, the context of an article can be difficult to analyze. The next section describes

one approach for addressing these problems.

2.2 Dimensionality Reduction

One of the major hurdles in decoding and comparing documents lies in the complexity of the

data [27]. Even a partial representation of a document is described by a space which is com-

posed of many thousands of dimensions. Even when using modern computers, manipulating
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such large amounts of data can be computationally expensive. Furthermore, in high dimen-

sional representations, meaningful associations can be lost and important relationships can

be obscured by unimportant information. The goal of dimensionality reduction is to reduce

a complex set of data in a way which preserves the meanings and associations inherent in the

original data. “Reduction” in this sense is reducing the number of dimensions in a sample

(document).

A number of methods currently exist for accomplishing this reduction. These methods

are broadly grouped into linear and non-linear approaches. These approaches include prin-

cipal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear

embedding (LLE), and most recently LDM’s method. Each of these methods seeks to find a

mapping which can represent the important features of the original data in a smaller space

with substantially fewer dimensions. This can be expressed mathematically as mapping the

original space RD to a new space Rd where d << D. Section 3.2 describes these algorithms,

as used in this research, in more detail.

2.3 Keyword Extraction

Keyword extraction is the process of determining which words in a document best describe

its content [20]. Keywords are important to the discovery process utilized by this research

because they can be used to quickly search extremely large collections of data. In partic-

ular, combinations of keywords from potentially related documents can be used to search

online databases like GoogleTM. The process of computing a word’s importance to a partic-

ular document is discussed in Section 3.1. The keyword extraction process is presented in

Section 3.4.
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Chapter 3

Approach

This work’s approach to text mining consists of a three-step process illustrated by Figure 3.1.

First, a collection of d documents documents are encoded into a form which the computer can

manipulate as described in Section 3.1. The second (optional) step, explained in Section 3.2,

is to perform dimensionality reduction on the information captured in the encoding process.

Finally, Section 3.3 describes analysis via document classification. Sections 3.5 and 3.4

describe analysis with LBD.

Figure 3.1: Our approach to text mining consists of a three-step process explained in Section 3.
For simplicity, this figure shows just 3 documents and 4 words; normally both of these numbers
would be much larger.
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3.1 Encoding

In order to work with documents and find relationships between them, they are first encoded

in some format which a machine is able to process. These encodings are formulated as

matrices where each document is described by a row in a matrix. There are a number of

possible matrices and ways to compute them, but based on previous work, a relatively simple

variation on word counting is used to encode a corpus of documents [26, 21].

Each column in the aforementioned matrix is referred to as a feature which describes

each document. These features are computed based on weighted word counts. The resulting

matrix is known as a (weighted) Term-Document Matrix (TDM) and can be computed as

follows:

1) Build a list of all stemmed words, also known as terms, in the corpus. Stemming is the

process of finding the root of a word. For example, the stemmed version of “love,”

“loves,” and “loved” is “lov.” This allows the encoding process to be largely indiffer-

ent to tense and pluarity of words. More complicated approaches of encoding such as

analyzing words in context is known as Natural Language Processing (NLP). However,

NLP is extremely difficult and cannot efficiently scale up to corpuses containing hun-

dreds or thousands of documents like the data sets used in this research. As a result,

no NLP is performed. This is consistent with other research in the text mining field.

When terms are collected individually, they are called unigrams. To try to gain some

contextual information, terms may be collected in pairs or triplets (bigrams or tri-

grams). Unigrams are often used because the additional complexity added by bigrams

or trigrams contributes little to the quality of the encoding.

2) Count the number of times each stemmed term appears in each document.

3) Count the total number of times each stemmed term appears in every document.

4) Prune the term list. Several techniques are used to prune words from the term list.

First, terms which do not contribute to the overall meaning of the document, known as

stopper or noise terms, can be removed during this stage. Stopper terms are domain-
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specific, but some such as “the” and “of” are removed from all corpora. The list of

stopper words removed is provided in Appendix C.1.

Second, terms are restricted to the domain of alphabetic or alphanumeric characters.

Therefore numbers are pruned out. Terms are also required to be at least three char-

acters long.

Finally, the terms can be pruned based on the frequency at which they appear which

allows for the removal of terms which appear too often or too infrequently.

The terms remaining on the pruned term list are the columns in the TDM. Specifically,

the term-document matrix M would contain the number of times word j appeared in

document i at Mi,j.

5) The weighted term-document matrix T can be computed as the weight of each term

for each document. Weight each term of each document using the Term-Frequency

Inverse-Document Frequency formula. Given the number of times t term j appears in

document i, the total number of times T all terms appeared in document i, the total

number of documents in the corpus D and the number of documents d which contain

the term j, the TF-IDF weight Ti,j for term j in document i is as follows:

Ti,j = (t/T ) ∗ ln(D/d) (3.1)

The term-document matrix is the input to some dimensionality reduction and classifi-

cations techniques. Others require an interpoint distance matrix (IPDM), also known as a

dissimilarity or distance matrix. The IPDM is defined as an n × n matrix which defines

the strength of the relationships between each document and every other document. These

relationship strengths may also be referred to as distances. A small distance between two

documents indicates that the two are very similar while a large distance represents docu-

ments which are weakly connected or far apart. In other words, the IPDM contains pairwise

distances between documents given some function δ which defines the distance between two

document doci and docj.
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The IPDM is defined as:

Disti,j = Distj,i = δ(doci, docj) (3.2)

3.2 Dimensionality Reduction

Each row in the encoded matrix can be viewed as the “signature vector” of its correspond-

ing document and is represented by some large dimensional space such as R10000 (10000

dimensional space). This space is too large and noisy to work with as it is, so some form

of dimensionality reduction is applied. The goal of dimensionality reduction would be to

reduce the entire matrix so that each signature vector is stored in a much small number of

dimensions, e.g., R5 space.

The input of a dimensionality reduction technique is a term-document matrix T (though

some techniques just compute the IPDM from T and use that). The output of a dimension-

ality reduction technique is a matrix P which consists of points in the new space. Each row

contains the new representation of the corresponding document in the input TDM or IPDM.

There are two broad types of dimensionality reduction - linear and non-linear.

Linear Methods

Linear approaches look at the relationships between all of the documents, regardless of

whether the distance between a pair of documents is small or great (i.e. whether the pair is

very similar or not). Since relationships between documents which are “far” away are also

influential, these approaches are known as global approaches.

3.2.1 Principal Components Analysis (PCA)

PCA, also known as the discrete Karhunen-Loeve transform, is a correlation-based dimen-

sionality reduction technique. In this approach, a set of representative dimensions called the

principal components (PCs) are chosen based on the degree of variation that they capture

from the original set of dimensions [16]. For instance, Figure 3.2 shows how the dimensions

which vary most are identified on a simple two-dimensional plot. These new dimensions do

not necessarily correspond to the original dimensions. In general, dimensions are ordered
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based on how much variance they capture. Since the first ones maximize variance, the last

few indicate less variable dimensions. Furthermore, the dimensions of lower importance may

also usually represent noise in a data set. This means PCA is also capable of distinguishing

between noise and interesting details [18]. The relative significance of a dimension can be

inferred from a scree plot like the one presented in Figure 3.3.

A scree plot is a plot of the eigenvalues found by an eigenvalue decomposition such as

SVD. Typically, the plot bends as the relative importance of the eigenvalues drops off. The

bend is referred to as the elbow of the graph and the eigenvalue at which this elbow occurs is

usually a good point to cut off all less significant eigenvalues [22]. This choice of how many

eigenvalues to use to create the output matrix determines how many dimensions are in the

output matrix. See Figure 3.3 for an example of a scree plot.

One of the biggest advantages of PCA is its lack of a tuning parameter [23]. Furthermore,

it is a non-iterative algorithm. This means the process by which the dimensionality of the

input is reduced is reached by taking a specific number of non-looping steps which can

provide a significant performance boost over iterative algorithms.

The embedding found by PCA is suboptimal with regards to the ability to accurately map

differences between categories because it does not adequately separate different categories of

observations [13].

Figure 3.2: PCA determines the directions in which the greatest unique variances occur. For
instance, in this picture the first principal component found (the “primary axis”) captures the
most variance in the original data, followed by the “secondary axis.”



19

The principal components are computed as follows:

Input: Term-Document Matrix, T (d × N where d = number of documents and N =

number of terms)

Algorithm:

1) (Optional) Normalize the data in the term-document matrix T . Let x be the scaled and

column-centered values computed for T by Equation B.9 (see Appendix).

2) Compute Σ, the r × c covariance matrix of x:

Covariance is the average spread, or how far a variable is from the mean. The covariance

between two documents k and l in x is:

Σk,l = Σl,k =
1

N − 1

N∑
i=1

((xk,i − x∗,i)(xl,i − x∗,i)) (3.3)

The d× d covariance matrix of x is:

Σ =


Σ1,1 · · · Σ1,d

...
. . .

...

Σd,1 · · · Σd,d

 (3.4)



20

3) Compute the singular value decomposition (SVD) of Σ:

SVD decomposes a real rectangular matrix Σ into its factorization as follows:

SV D(Σ) = U ·D · V (3.5)

D is a diagonal matrix whose off-diagonal values are zeros and whose diagonal is the

square root of each eigenvalue in decreasing order of magnitude:

D =


√

λ1 · · · 0
...

. . .
...

0 · · ·
√

λr

 (3.6)

4) Determine n, the dimensionality of the reduced matrix.

The output matrix M still has d rows but the new number of columns n may be chosen

to be a small number such n << N . The maximum value of n may be as large as N ,

though it may be smaller depending on the input matrix x. n may not be larger than

N or larger than the number of positive, real eigenvalues found by SVD.
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Figure 3.3: This scree plots shows the relative magnitude of eigenvalues found by PCA while
performing a singular value decomposition on the encoding of the Science News data set. The
elbow of this graph occurs at approximately the 15th eigenvalue.
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5) Construct the new matrix P from the column vectors resulting from the multiplication

of the square root of the most significant (greatest magnitude) n eigenvalues λ by their

corresponding eigenvectors u:

PPCA =


u1,1

√
λ1 · · · un,1

√
λn

...
. . .

...

u1,n

√
λ1 · · · un,n

√
λn

 (3.7)

3.2.2 Multi-dimensional Scaling (MDS)

MDS is an alternative dimensionality reduction technique that focuses on preserving pairwise

distances, or distances between pairs of points [33]. The input consists of a set of proximities

or distances between elements in the data, usually in the form of an IPDM, which MDS

attempts to embed into a smaller space without losing the relationships between each.

The dimensionally reduced embedding is computed by performing an eigenvalue decom-

position on the input. Specifically, MDS is traditionally performed on a corpus as follows

[3]:

Input :

A. Dissimilarity Matrix, M (d × d where d = number of documents) (see Equation

3.2)

B. Number of dimensions to output, r (this is the number of dimensions which is

used to represent each dimensionally reduced observation)

Algorithm:

Preprocessing the input: (Optional) Embed the input M into a Euclidean space. MDS

assumes distances are Euclidean, but text mining often uses cosine distances. Though

cosine distances usually work well without doing this step, it is is possible that MDS

may fail to find a low-dimensional embedding if the dissimilarities are not a valid

Euclidean embedding. If MDS does fail to find a low-dimensional embedding, there is

a standard procedure for embedding a non-Euclidean dissimilarities into a Euclidean

space. This procedure is detailed in Section B.2.
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1) Let S hold the squares of all dissimilarities in M :

Si,j = M2
i,j

2) Normalize the squared dissimilarities in S (see Equation B.1). Let C be the double-

centered values computed for S with Equation B.6 and then multiplied by −1/2.

3) Compute the eigenvalues and eigenvectors for C. Keep only the r biggest eigenvalues

and associated eigenvectors.

Let D be the diagonal matrix of positive eigenvalues in descending order such that the

biggest eigenvalue is D1,1 and the second biggest eigenvalue is D2,2 and so on.

Let Q be the matrix of eigenvectors associated with the eigenvalues in D such that

the first eigenvalue, or D1,1, corresponds to the first eigenvector Q∗, 1. Therefore, each

eigenvector is a column vector in Q.

4) Create the new, lower-dimensional representation by multiplying eigenvectors by the

diagonal matrix of the square roots of their associated eigenvalues in descending order.

This means the output points P (a d× r matrix) is computed as follows:

PMDS = QD
1
2 (3.8)

Non-Linear Methods

Unfortunately, the global view resulting from the linear approaches can obscure local

interactions, possibly obscuring overall patterns in collections of information. PCA and

MDS value relationships between items even if the two are far away. This behavior is

detrimental to determining the importance of local structures [25]. In contrast, the non-

linear approaches focus on local relationships, more accurately preserving the patterns which

are blurred by PCA and MDS. The distinction between linear and non-linear methods can

be clearly demonstrated when they are applied to determining the structure of images. Non-

linear methods work well with geometric figures resembling circles and spirals, where the

linear approaches perform comparatively poorly [27]. Isomap and LDM’s approach have
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been used quite a bit with images, but how they work with regards to text mining was not

understood very well.

Dimension reduction is often thought of in terms of geometric transformations of points in

high-dimensional spaces. For text mining, each of these points represents a single document.

Non-linear methods separate points into a number of sets, often represented by graphs,

which contain nodes which are in the same local area. The members of these sets are usually

determined by placing the k “nearest neighbors” in each set. An alternative to the nearest

neighbor approach is to include all points within a specified radius [24].

Graphs are used to represent points and the relationships between them (modeled as rela-

tionships or similarity ratings) because much of graph theory lends itself to operations which

are required by current dimensionality reduction techniques. Many existing algorithms have

been optimized for graphs including shortest path determination, matrix diagonalization,

minimum spanning tree determination (Kruskal’s algorithm), and many others [24]. These

tools make graphs the best way to represent sparse, related data [18].

3.2.3 Locally Linear Embedding (LLE)

This non-linear approach is a non-iterative process founded on geometric intuition [25]. This

unusual foundation contrasts with other graph-based, non-linear techniques. It relies on an

assumption that high-dimensional data actually resides on some low-dimensional manifold

within the large input space. If this is true, then uncovering a low-dimensional embedding is

only a matter of translating, rotating, and scaling the existing data based on weights which

maintains “intrinsic geometric properties” present on the low-dimensional manifolds.

LLE has been successfully used to determine the relationships of highly non-linear sur-

faces with success by a number of researchers. Results for several interesting experiments

that benefit from LLE’s application are presented in the related work discussion in Section 7.
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LLE can be computed as follows [25]:

Input :

A. Term-Document Matrix, T (d × N where d = number of documents and N =

number of terms)

B. Dissimilarity Matrix, M (d× d) (see Equation 3.2)

C. Number of dimensions to output, r

D. Tuning Parameter : Number of neighbors to consider for each document, k

Algorithm:

1) Construct a neighborhood graph based on the distances between observations specified

by M . Place the k neighbors of observation i in the matrix νi (k ×N). The weight of

term b in neighbor a is Ta,b. Store this weight for observation i in νia,b
.

2) Solve for the k × d reconstruction weights matrix W as follows:

A. Construct the local observation matrix Oi for each observation i. The local ob-

servation matrix has k rows - one for each of observation i’s k neighbors in ν such

that:

Oi =


νi1,1 · · · νi1,N

...
. . .

...

νik,1
· · · νik,N

 (3.9)

B. Subtract observation i’s weights from its neighbors’ weights. Store the result the

k ×N matrix Di such that:

Di =


Oi1,1 − Ti,1 · · · Oi1,N

− Ti,N

...
. . .

...

Oik,1
− Ti,1 · · · Oik,N

− Ti,N

 (3.10)
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C. For each observation i, create the k × k matrix Xi which is the product of multi-

plying Di with its transpose such that:

Xi = DiD
T
i (3.11)

D. For each observation i, solve the linear system Xiwi = 1 for the weights wi. Let 1

one be a column vector ones. wi is a k× 1 column vector of which is being solved

for.

E. For each observation i and each term weight j, scale its weights wij by the largest

weight in wi and store the scaled weights in a column vector in the k × d weights

matrix W as follows:

Wj,i =
wij

max(wi)
(3.12)

3) Compute the d× d cost matrix C as follows:

C = (I −W )T (I −W ) (3.13)

4) Compute the eigenvalues and eigenvectors for C. Keep only the r smallest eigenvalues

and associated eigenvectors.

Let D be the diagonal matrix of positive eigenvalues in ascending order such that the

smallest eigenvalue is D1,1 and the second smallest eigenvalue is D2,2 and so on.

Let Q be the matrix of eigenvectors associated with the eigenvalues in D such that

the first eigenvalue, or D1,1, corresponds to the first eigenvector Q∗, 1. Therefore, each

eigenvector is a column vector in Q.

5) Create the new, lower-dimensional representation by multiplying eigenvectors by the

square root of the number of observations. This means the output points P (a d × r

matrix) is computed as follows:

PLLE = Q ·
√

d (3.14)
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3.2.4 Isomap

This technique, though similar to LLE, approaches the problem of efficiently maintaining

local patterns by utilizing graphs. Like LLE, it is a non-linear, non-iterative algorithm. It has

been shown to work well in a variety of situations, but it is not flawless. Its biggest weakness,

much like LLE, is the tuning parameter. If the tuning parameter k (number of neighbors

to consider) is picked to be too large, then the local relationships may extend to points

which are not truly relevant to a set’s local structure, skewing the output. On the other

hand, if k is too small then the data appears disconnected and show up as isolated islands of

data [2]. Unlike PCA which was able to effectively deal with and identify dimensions which

contributed to noise, Isomap is more vulnerable to noise. It does not directly handle noise,

though if enough data is present the noise’s impact is likely to be inconsequential [9].

Experiments by Tobias Friedrich which compared the effectiveness of Isomap and LLE

found Isomap to be more efficient and better able to accurately reduce the dimensionality of

the original data than LLE. The accuracy of Isomap’s dimensional reduction on Swiss rolls

and s-curves were one to two orders of magnitude higher than the LLE. It was also found to

work better on sparse data sets. LLE’s worst-case runtime is higher than Isomap’s as well.

However, the results focused on somewhat limited data and both performed far better than

linear techniques (namely PCA and MDS) did on the same data sets [12].

Other research on Isomap shows that it is quite strong when it comes to geometric and

image data. It can determine the relationships of these highly non-linear surfaces. Results

for several interesting experiments that benefit from Isomap’s application are presented in

the related work discussion in Section 7.

Isomap can be computed as follows [30]:

Input :

A. Dissimilarity Matrix, M (d× d) (see Equation 3.2)

B. Number of dimensions to output, r

C. Tuning Parameter : Number of neighbors to consider for each document, k
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Algorithm:

1) Construct a neighborhood graph G based on the distances between observations specified

by M . Each node in graph G is connected to its k nearest neighbors.

2) Construct a new dissimilarity matrix D from the shortest distance from every obser-

vation to every other observation through the neighborhood graph. In other words,

distance is defined as the length of the shortest path through the graph G constructed

in step 1. This means that the paths connecting nearest neighbors in G are used to

find distances between all points. G is typically very sparse.

With this knowledge, there is an efficient means to compute these paths. To efficiently

find the distances between all pairs, a special version of Dijkstra’s algorithm can be

used which conducts a priority first search.

3) Run MDS on the new dissimilarity matrix D to construct the low-dimensional embedding.

The result is dimensionally reduced observtions:

PIsomap = MDS(D) (3.15)

3.2.5 Laplace-Beltrami Diffusion Maps (LDM)

LDM’s method, like other non-linear methods, is aimed at preserving the local features when

reducing the number of dimensions from the original data set. The fundamental idea behind

LDM is to perform non-linear transformations on the initial interpoint distance matrix in

a way that helps accentuate local relationships [6, 7]. In particular, LDM tries to preserve

relationships based on path aggregations, or how many paths exist between two observations.

A path describes how two documents are connected.

One example to help visualize how LDM works is shown in Figure 3.4. In this example,

the input points are in the shape of a barbell. This means that for points in one side of the

barbell to get to points on the other side of the barbell, they first travel through the single

line of points connecting the two halves. This means there are many fewer paths between a

point in the left half and a point in the right half than between two points on the left half.
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As a result, LDM clumps each half relatively close to each other, but spreads out the left

and right halves and the points which connect them because there are relatively few paths

between them.

 

 Points in 2 Dimensions After Lafon is Applied

 

 

 

 
Points in 2 Dimensions Before Lafon is Applied

Figure 3.4: The top graph shows a barbell-shaped collection of points. The lower graph shows the
points constructed in 2-dimensions by applying LDM to the barbell-shaped points [31].

LDM has the advantage of being an unsupervised dimensionality reduction algorithm.

Like PCA and MDS, it has no tuning parameter that is not generally computable. Other

non-linear techniques like Isomap and LLE both require a tuning parameter, the number of

neighbors, to be set. Setting such parameters is difficult and they can in some cases overfit

the model [15]. LDM instead has a tuning parameter ε that is defined based on the data.

LDM has been successfully used to analyze various biological data such as CATSCAN

images and microarray data from fibroblast cells [15]. Results for these experiments are

presented in the related work discussion in Section 7.

LDM can be computed as follows [19]:

Input :

A. Dissimilarity Matrix, M (d× d) (see Equation 3.2)
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B. Number of dimensions to output, r

Algorithm:

1) Let ε be the minimum distance between any two observations in the corpus.

ε = min(Mi,j) (3.16)

2) Compute the d× d matrix K1 such that:

K1i,j = e−
M2

i,j
ε (3.17)

3) Let p be the row sums for each row in K1 (let 1 be a column vector of 1s):

p = K1 · 1 (3.18)

4) Define K2 to be the element-by-element division of K1 by the product of p and its

transpose:

K2i,j = K1i,j/(p · pT ) (3.19)

5) Let v be the square root of the row sums for each row in K2 (let 1 be a column vector of

1s). The product of K2 and the column vector of 1s produces a column vector which

contains the row sums for each row in K2. The square root of each element in that

vector is then taken. The result is v:

v =
√

K2 · 1 (3.20)

6) Define K3 to be the element-by-element division of K2 by the product of v and its

transpose:

K3i,j = K2i,j/(v · vT ) (3.21)
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7) Compute the singular value decomposition of K3 to get U , D, and V as specified in

Equation 3.5.

8) The output points can then be computed as in Equation 3.7 except each eigenvector is

scaled by the first eigenvector and then the first eigenvector is discarded [19]. After

discarding the first eigenvector, only keep the first r dimensions for the output points

as specified in Equation 3.7.

3.2.6 Discussion

There are a variety of techniques for dimensionality reduction. Non-linear techniques are

more adept at handling complex data, at least for images and related visual data. However,

LDM and Isomap had not been adequately tested with regards to text mining applications

prior to this research.

Some of the techniques choose a value for the “free parameter” k. There is no direct

way to find the best value for k. As a result, different values of k are empirically tested in

order to determine which value is most appropriate. The significance of k varies from one

algorithm to another. Isomap, for example, is less sensitive to changes in k than locally

linear embedding [12]. LDM’s method has the significant advantage of not needing to define

a k value.

3.3 Analysis via Classification

In order to gauge the effectiveness of the dimensionality reduction techniques, their output

is analyzed. Classification is one way to analyze the effectiveness of the algorithms. Classifi-

cation uses a set of “training data” with known categories to decide how to assign categories

to observations in a “test set.” In effect, the “training set” is used to gain an understanding

what features distinguish observations from each class.

There are numerous methods for classifying data. This project uses three methods for

classifying documents including the k-nearest neighbor (kNN), linear, and quadratic classi-

fiers. The input for these classifiers and some constants based on that input is as follows:
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Input: The features which describe each document and the class of each document.

• Feature-Document Matrix, x (d × N where d = number of documents and N =

number of features).

• Class vectors ĉ, where ĉi is the vector of document indices in class i such that xĉi,k

is the kth document in class i.

Only documents being used as training data are assigned to a class vector. Documents

which are not being used as training data do not yet have categories and so they are

not assigned to any class vector.

Constants: z is defined as the number of classes. ni is defined as the the number of

documents in class i. n is defined as the number of all documents in all classes:

n =
z∑

i=1

n̂i (3.22)

3.3.1 k-Nearest Neighbor Classification

The k-nearest neighbor classifier assigns classes to untrained observations based on the

class(es) of the closest observations in the training data [10]. These “closest observations”

are also known as nearest neighbors. The number of nearest neighbors used to classify each

piece of untrained data is k. If k is not one, then this algorithm is called the k-nearest

neighbors algorithm.

To classify untrained data using the k-nearest neighbor classifier:

Algorithm:

1) Compute a distance matrix D from the input matrix x using the Equation 3.2.

2) For each unclassified document di in D:

A. Compute the vector v̂ of the k nearest classified neighbors of di.
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B. Assign di’s class as the class of document which appears most often in vector v̂.

C. If there is a tie between which class appears most often, then randomly select the

class to assign from those which tied with the most occurrences in v̂.

D. Sometimes, instead of choosing the class based on which was most frequent among

one’s neighbors, neighbors could be weighted based on their distance from the

point. However, this research used the simpler voting system without weighting

nearest neighbors.

3.3.2 Linear Classification

Linear classification is characterized by linear functions which separates classes [10]. In two

dimensions with two classes, this can be visualized as a line represented by some linear equa-

tion in the form y = m ∗ a + b which separates the two classes. In three dimensions, two

classes would be separated by a plane.

Applying a linear classifier is done as follows:

Algorithm:

Part 1: Learning the Classifier

1) Create the training set by constructing a vector Ĉ of class-specific d×N feature-document

matrices, where Ĉi is a feature-document matrix containing only the documents from x

which are in class i. This means Ĉij,k
is the value of the kth feature of the jth document

in class i.

2) Compute the matrix µ of class-specific feature means, where µi is the row vector of feature

means from class i. This means µij is the mean of the jth feature in class i:

µij = avg(Ĉi1,j
: Ĉini,j

) =

ni∑
q=1

Ĉiq,j

ni

(3.23)
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µ =


µ1,1 · · · µ1,N

...
. . .

...

µz,1 · · · µz,N

 (3.24)

3) Compute the class-specific z × z covariance matrices, where Φ̂i is a covariance matrix

computed from transpose of Ĉi as defined by Equation 3.4.

4) Compute the pooled covariance matrix Σ from the weighted class-specific covariance

matrices in Φ̂:

Σ =

z∑
i=1

(ni − 1)(Φ̂i)

n− z
(3.25)

5) Create the function for each class which predicts the likelihood that some observation

belongs to its class.

The likelihood of document xi being in class ĉj is defined by the likelihood function

f(xi, ĉj):

f(xi, ĉj) =
1

(2π)
N
2 · |Σ| 12

· e−
1
2
(xi−µj)Σ

−1(xi−µj)
T

(3.26)

Since the class of xi can be determined by comparing the likelihood functions, only the

relative order of the function’s values are important, not the values themselves. As a

result, a simpler likelihood function f ′(xi, cj) is used:

f ′(xi, ĉj) = (−1) · (xi − µ̂j)Σ
−1(xi − µ̂j)

T (3.27)
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Note: µ̂j is the vector of feature means for the class ĉj.

Part 2: Apply the Classifier

Classify each point based on the simplified likelihood function values. For each category

j and each unclassified document xi, compute f ′(xi, ĉj). Whichever class j yields the

highest f ′(xi, ĉj) is assigned to xi.

3.3.3 Quadratic Classification

Quadratic classification is characterized by non-linear quadratic functions which separate

classes [10]. This provides a more flexible separation scheme than linear classifiers and can

better distinguish classes lying on non-linear manifolds. Specifically, quadratic classifiers use

the same general process as linear classifiers but use the covariance matrix for class i instead

of the pooled covariance matrix for all classes. In particular, the steps are identical except

for the following changes below:

Algorithm:

4) This step is not necessary for quadratic classifiers – skip computing the pooled covariance

matrix Σ.

5) As with linear classification, create the function for each class which predicts the likeli-

hood that some observation belongs to its class. However, when computing the like-

lihood use the appropriate class-specific covariance matrix Φ̂ instead of the pooled

covariance matrix Σ:

• The likelihood of document xi being in class ĉj is defined by the likelihood function

f(xi, ĉj):

f(xi, ĉj) =
1

(2π)
N
2 · |Φ̂j|

1
2

· e−
1
2
(xi−µj)Φ̂

−1
j (xi−µj)

T

(3.28)
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• Equation 3.28 can be simplified by dropping the (2π)
d
2 because ordering is still

the important factor:

f(xi, ĉj) =
1

|Φ̂j|
1
2

· e−
1
2
(xi−µj)Φ̂

−1
j (xi−µj)

T

(3.29)

Apply the Classifier

Classify each point based on the likelihood function values. For each category j and each un-

classified document xi, compute f(xi, ĉj). Whichever class j yields the highest f(xi, ĉj)

is assigned to xi.

3.3.4 Confusion Matrices

Confusion matrices (CMs) help identify the source of some classification errors. Each row in

the matrix identifies how well a particular category was classified and where it was classified.

Table 3.1 shows an example with these categories: Astronomy, History, and Physics. The

first row specifies what percentage of astronomy articles were classified as astronomy, as

history, and as physics. This means that the diagonal contains the percentage correct for

each category. Off-diagonals identify where errors occurred.

Table 3.1: Confusion Matrix (CM) Example
Predicted Category

Category Astronomy History Physics

Astronomy 85.0 2.0 13.0
History 1.0 95.0 4.0
Physics 8.0 2.0 90.0

These matrices allow one to quickly see if sources of error seem reasonable. For example,

it is understandable to have errors due to confusion between astronomy and physics articles
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because those two fields are related. However, if there was a substantial amount of error

between history and physics, more rigorous analysis would need to be done in order to

understand why unexpected misclassifications of this sort were occurring.

3.4 Keyword Extraction Process

Keyword extraction is driven by the weighted term-document matrix. The most straight-

forward method is to find keywords for a particular document, is to find keywords for a

particular document [5]. This relatively simple method produces relevant keywords, but

many of the top keywords are often proper nouns. Proper nouns, however, are not partic-

ularly good keywords for finding related documents because they may limit the search to

a particular entity’s work. Therefore, to improve the quality of the searches built from the

extracted keywords, proper nouns had to be removed.

The proper noun removal process used by this research utilizes a number of ideas from

past keyword extraction work referenced in Section 7.3. Words were flagged as proper nouns

if they met the following criteria:

• A word was considered to be proper noun if it was capitalized and was not the first

word in a sentence or in the title.

• A word was considered to be proper noun if it was (or followed) a predefined title such

as “Mr.” or “Prof.”

• If a word appeared multiple times in a single document, all occurrences would be

considered proper nouns if at least half of the occurrences were considered to be proper

nouns.

• If a word was considered to be a proper noun in more than half of the documents

in which it appeared, all occurrences of that proper noun would be considered to be

proper nouns in all documents.

Once proper nouns have been removed, keywords can be extracted. Keywords may be

individual words (unigrams) or phrases of consecutive words. This research considered all

unigrams and bigrams when choosing keywords.
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3.5 Analysis via Literature-Based Discovery

LBD is another method which can be used to analyze the effectiveness of dimensionality

reduction. The LBD process utilized by this research is composed of several steps. First, pairs

of documents which may have an interesting association are uncovered. Second, keywords

are extracted from each document in the pair. Third, the keywords are used to search for

related documents. Finally, the search results are used to compute a score which estimates

the discovery’s merit. The process of keyword and search-based LBD evaluation, and the

specific scoring technique used, are new contributions of this project.

3.5.1 Step 1: Identify Candidate Discoveries

First, documents which may be associated in a meaningful and interesting way are paired. A

meaningful association is defined as a pair of documents which are closely related. The dis-

tance matrix defined in Equation 3.2 (computed after DR is performed) is used to determine

which pairs of documents are closest. Not all closely related documents, however, are inter-

esting associations. Since documents in the same category are expected to be closely related,

only associations between documents in disparate categories are considered interesting.

3.5.2 Step 2: Extract Relevant Keywords

Second, keywords are extracted from each document. This process is described in Section

3.4.

3.5.3 Step 3: Query for Related Documents

The third step uses the keywords to search the web for scientific documents which combine

the main ideas from both documents in a pair. Results from this search are interesting

because they reveal that the main ideas from the two documents may indeed have an inter-

esting scientific connection, even though they come from different categories. Finding such

a match on the web indicates an interesting connection that has been previously described

by some scientific articles. This project uses such prior discoveries to assess which DR tech-
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niques best facilitate LBD. Closely related documents (according to step 1) for which no

appropriate web documents are found may represent previously undiscovered associations.

Discovering such associations is the ultimate goal of LBD.

The web searches are formulated so that at least one keyword from each document is

present in resulting documents. Three different types of searches were considered. These

correspond to searches that use:

1) Two unigram keywords and two bigram keywords from each document.

2) Zero unigram keywords and three bigram keywords from each document.

3) Up to two unigram keywords (minimum weight required) and two bigram keywords from

each document. This minimum weight requirement for unigrams was implemented

because unigrams were frequently less discriminate than bigrams.

3.5.4 Step 4: Assess Discoveries Based on Query Results

Finally, the results of these searches are used to compute a score which indicates the relevance

and novelty of the association. These scores are analyzed in Section 6. To determine a pair’s

score, searches are executed on both GoogleTM and Google ScholarTM.

First, searches are done that require at least one keyword from both documents to be

present in resulting documents. The number of documents, GS∩, found by the Google

ScholarTM search is an indication of how well known and how valid an association is within

the academic community. The number of documents, G∩, found by the GoogleTM search is

an indication of whether or not an association is well known on the web in general.

Second, searches are done that only require one keyword from either document to be

present in resulting documents. The number of documents, GS∪, found by the Google

ScholarTM search is an indication of how common the general concepts are within the aca-

demic community. The number of documents, G∪, found by the GoogleTM search is an

indication of how common the general concepts are on the web in general.

The results of the searches are then combined to construct two scores as follows:

scoreGS =
GS∩

GS∪
(3.30)
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scoreG =
G∩ −GS∩

G∪ −GS∪
(3.31)

The first score computes how relevant the two documents were to each other in the

scientific community, using GS∪ to normalize by the overall frequency of the documents’

keywords. The second score computes a similar relevance score for the general web commu-

nity. Results from Google Scholar are subtracted out of this score in order to measure the

relevance excluding the academic community (Google Scholar is roughly a subset of Google).

Finally, these two scores are combined:

scorenovelty =
scoreGS

scoreG

(3.32)

Dividing the Google Scholar score by the Google score returns an overall measure of

novelty for a candidate association. This score is high for associations that are highly relevant

in the academic community (scoreGS), but less high in the general web community (scoreG).
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Chapter 4

Experimental Method

4.1 Data Sets

4.1.1 Science News Corpus

This corpus was comprised of 1,160 previous hand-categorized articles. 113 articles were

assigned to multiple categories, so these were removed from the corpus as done by other re-

searchers. The remaining 1,047 articles exist in eight categories: Anthropology (54 articles),

Astronomy (121), Behavior (72), Earth Sciences (137), Life Sciences (205), Mathematics

(60), Medical (280), and Physics (118).

These categories provided several interesting opportunities. First, some of these cate-

gories are very distinct - in other words, they have little in common. This kind of data is

easy for dimensionality reduction techniques to take advantage of since there is a relatively

clear boundary between such categories. This led to the creation of a special 2-category

version of this corpus which is referred to as Science News-2 (the full version is referred to

as Science News-8). Science News-2 contains all Astronomy and Medical articles which are

very well-separated categories.

Another interesting case was to introduce two other categories to this mix such that they

would probably overlap a little with the existing categories and thereby make the data set

harder than the simple 2-category, well-separated Science News-2 data set. This data set,
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called Science News-4 Separated, also included Earth and Life Sciences. Life Sciences had

some overlap with Medical, and Earth was originally thought to have been fairly isolated, but

in reality it caused some confusion for both Astronomy and Life Sciences articles. Another

version containing four categories is termed Science News-4 Overlapping. It contains the

categories from Science News which overlap most - Anthropology, Behavior, Life Sciences,

and Medicine. This data set was created as a challenge for the classification analysis. Finally,

the full data set was condensed into four “meta-categories” which grouped similar categories

together into larger categories. The first meta-category included Behavior, Life Sciences,

and Medicine. The second meta-category contained Anthropology and Earth Sciences. The

third meta-category contained Astronomy and Physics. The fourth meta-category included

Math. This version of Science News, termed Science News-4M, was created for the discovery

process. Since cross-category pairs are required, it was theorized that if similar categories

were combined, then the candidate discoveries would be more interesting since they would

span broader areas.

In the full data set, Science News-8, the categories are still relatively distinct. Also helpful

for a classifier, the average length of each article was long compared to articles in other data

sets. The average Science News-8 article contains 7.80KB of text.

4.1.2 Google News Corpus

This is a large corpus consisting of 3,028 articles. These articles are distributed among

five reasonably well-defined and fairly evenly distributed categories including Business (566

articles), Health (518), Science & Technology (599), US News (672), and World News (673).

The average document length is 4.0KB of text, or about half as long as Science News articles.

This means there is less information for the classifier to help distinguish documents, but the

sheer numbers of documents offsets this less information per document by still providing a

lot of information about each category.
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4.1.3 Science & Technology Corpus

This corpus is relatively small and is comprised of 658 articles scattered across seven cate-

gories. These categories vary greatly in size and are not as clearly separable as categories in

the previously mentioned corpora. The seven categories break down as follows: Information

(85), Weapons (66), Sensors (162), Ground (96), Biomedical (40), Anti-Submarine (47), and

Materials and Processes (162). The articles in this corpus are noisier as they contain less

relevant information including copyrights, where something was published, etc. Further-

more, the amount of information per article is much less than Science News - the average

article size is only 2.7KB of text. Some articles only contain 2-3 sentences beyond headings

and other unimportant information. This makes the Science & Technology corpus the most

difficult corpus to obtain accurate classification results for.

4.2 Parameters

Text mining is a complicated process with many parameters. This Section details the pa-

rameters relevant to the experiments carried out by this research and explains choices made

regarding these parameters. Figures 4.1, 4.2, and 4.3 show the parameters which could be

set for each step in the experimental process. Values which are underlined are the typical

values used.

4.2.1 Encoding Process Parameters

The process for encoding a corpus is highly configurable. Figure 4.1 illustrates the parameters

involved in the encoding process. Based on previous research by Martinez and Wegman,

collaborators’ experience, and experimentation a “standard” set of encoding parameters was

developed for use with this research.

The output of the encoding process is either a TDM or an IPDM depending on the next

step in the overall process. The weighted TDM is always computed because it is needed to

compute the IPDM. The distance metric and dissimilarity computer parameters only apply

if the IPDM is being computed, however. The IPDM is defined by Equation 3.2. However,
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• n-gram size range [1, 1]
• stopper words (none, from file)
• word weight threshold [0.0]
• weighting type (TFIDF, counts, binary counts)
• word composition (alphanumeric, alphabetic, a or #)
• word usage constraints [min/max usages, %, freq]

Figure 4.1: Illustration of the parameters that configure the corpus encoding process

there is more than one way to define the distance between two documents. The cosine

distance metric is used to create IPDMs for all dimensionality reduction techniques except

LDM. The cosine distance d between two documents A and B is defined as the following

(recall, documents are represented as a vectors of weights in the TDM):

dA,B =
A •B√

(A • A) · (B •B)
(4.1)

LDM performs best with scaled Euclidean distances. The Euclidean distance metric used

to produce the Euclidean IPDM for LDM is the usual Euclidean distance, except it is scaled

so that the (scaled) distance δA,B between two documents A and B is defined as the following

(given that dA,B is the standard Euclidean distance between A and B):

δA,B = (1− dA,B

max(di,j)
) (4.2)

Though any range of n-grams could be considered, this research only considered unigrams.

In this case, the simpler unigram seemed to better represent the data than more complicated

representations based on bigrams, trigrams, or larger n-grams. A standard list of stopper

words provided by the collaborators is always used in the encoding process (see Appendix

C.1). Weights (as defined by Equation 3.1) are thresholded at 2 ·10−32 so that weights below

that value are set to zero. Weighting is always done using the TF-IDF defined by Equation 3.1

because plain counts are much less informative and they drastically reduced classification

accuracy. Words containing alphanumeric compositions are allowed, but not numbers by
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themselves since taken out of context a number usually means very little. Words are also

only considered if they occur at least three times in the corpus – below that quantity they

are so insignificant that it is better to not consider them since each term adds a dimension

to the TDM.

These parameters, along with the data set to encode, are passed to the Corpus Encoder

tool which produces the TDM or IPDM as specified. That output is then directly passed to

the dimensionality reduction tool.

4.2.2 Dimensionality Reduction Parameters
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Figure 4.2: Illustration of the parameters that configure the dimensionality reduction process

Though dimensionality reduction is a fairly complicated process, there are relatively few

parameters to consider, and only two techniques, Isomap and LLE, require users to specify

a tuning parameter. Figure 4.2 illustrates the parameters involved in the dimensionality

reduction process.

Every dimensionality reduction technique analyzed here does some sort of eigenvalue de-

composition. Eigenvalues which have a value of 0 or less are thrown out because only positive

eigenvalues convey useful information. Instead of comparing exactly for 0, eigenvalues are

thresholded at 2 · 10−32 and eigenvalues less than that are treated is if they were 0.

The number of possible output dimensions is equal to the number of positive eigenvalues

found. However, since the object of dimensionality reduction is to minimize the number

of output dimensions, that parameter may be specified as something other than all pos-
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sible dimensions. Specifying a lower parameter value just truncates information in higher

dimensions.

Some TDMs and IPDMs are formed in such a way that eigenvalue decompositions may

not be possible. This problem can be corrected for any IPDM because it is a symmetric

matrix. The fix is to embed the IPDM in a Euclidean space. This process and more details

about the motivation for it are discussed in Section B.2.

Finally, Isomap and LLE require a tuning parameter k which affects how many neighbors

are considered when constructing “neighborhoods” of documents. Alternatively, a neighbor-

hood may be formed with the ε-ball method which makes other observations neighbors if

they are within a radius ε. In this research, the k-nearest neighbor approach is used with a

fixed value of 10. This was experimentally chosen and is further explained in Section 5.4.3.

4.2.3 Classification Parameters

• k Nearest Neighbors Classifier
• Linear Classifier
• Quadratic ClassifierClassificationClassification33

GroupsGroups
• Groupings pre-computed (to allow for reuse)

• saved in groups-<#inEachGrp>[-v<#>].xml
• can have several groupings per # of groups

• Creating Groups (for a particular input source)
• group name [any string, or none]
• equalize, e.g. even category spread (yes)
• number of groups [2]
• groups are randomly chosen w/in constraints

cla
ss

ifi
ed

cla
ss

ifi
ed

• Classification results
• liklihood of a document being in 
each class for linear, quadratic

• includes # of votes for each 
category for kNN

(kNN => # of votes for each category for each 

• How to determine the category
• Just pick the category with the most votes or 
the highest liklihood valueEvaluationEvaluation44

OutputOutput
• Breakdown of results

• total # correct and incorrect
• percentage correct by category
• confusion matrices

re
su

lts
re

su
lts

• Results object
• standard output format
• includes time of the results
• notes all parameters of the 
experiment along with the results

(results stored in standard format for quick, automated retrieval as needed)
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ParametersParametersFigure 4.3: Illustration of the parameters that configure the classification process

Like dimensionality reduction, classification is a fairly straightforward process. The only

tuning parameter belongs to the kNN classifier which has to specify how many neighbors it

looks at to determine the category of an observation. Figure 4.3 illustrates the parameters

involved in the classification process.

The number of neighbors (k) which are used to effectively classify documents was ex-

tensively tested and a reasonable value for all data sets considered was 9. Classification

performance is analyzed in Section 5.2 and the range of most effective values for k is pre-
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sented in Section 5.4.2.

All classifiers operate with training and test sets. The training sets are given to the

classifier so it has some data which it can use to classify observations whose categories are

unknown. Training sets can be specified using “groups” which are simply predefined lists

of documents which can be created, stored, and then re-used for the sake of consistency.

Groups are only used for cross-validation classification which is when some groups are used

to train the classifier and then other groups are classified. For leave-one-out validation,

all observations are classified. Each observation is classified using every observation except

itself as training data for the classifier. Performance was slightly higher when this kind

of validation was done, presumably because more training data results in a more effective

classifier. As a result, leave-one-out-validation was used throughout all experiments detailed

in Section 5.

The number and types of keywords to choose for each selected document was another

parameter (see Section 3.4 for details).

4.3 Tools

The tools described in this section are Java libraries created to perform this research. How-

ever, despite the focus of this research of text mining, these tools have been created to be

as much of a general-purpose tool as possible. For example, the dimensionality reduction

techniques readily work on image, geometric, and other kinds of data.

The Corpus Encoder is a tool which takes a collection of articles organized in separate files

and encodes them according to user specifications. All parameters discussed in Section 4.2.1

are supported. This tool can be run as a standalone program. Its user manual is included

in Section C.5.

The Groups Encoder is a tool which takes a list of filenames and their categories and

creates groups as specified by the user. The contents groups are output as files so that the

groups can be reused (since they can be randomly generated within given constraints). These

group files are used by the Experiment Runner tool to split observations between training

and test data sets when cross-validation is being performed. The user manual for this tool



47

is included in Section C.4.

The Experiment Runner is a tool which runs a set of classification experiments from start

to finish. It allows the user to specify what parameters to vary, etc. Results and associated

data can be stored in files where it can be later referenced. The user manual for this tool is

included in Section C.3.

Dimensionality reduction and classification tools libraries have been created and are used

in the experiment runner. They are stand-alone libraries but no user interface which can be

run independently of another program has been created for these yet. However, they have

been created so that they may operate on any numerical data so they are not limited to the

domain of text mining.

The Keyword Generator is a tool which generates keywords for all documents in a corpus.

It is able to generate keywords in the form of unigrams, bigrams, and larger n-grams. It also

performs proper noun removal as discussed in Section 3.4.

The Pair Finder is a tool which finds the closest pairs from disparate categories for a

given dimensionality reduction technique and data set. It uses the Corpus Encoder to encode

a data set. It saves pairs and all relevant data to files which can be later used for LBD.

The Query Preparer is a tool which generates searches from pairs of documents and their

keywords. In particular, in generates querries which can be easily run against the Google

TM database.

The Query Runner is a tool which actually runs querries against the Google TM databases.

It caches results so that identical querries are not run more than once. It is responsible for

parsing results and identifying the number of results which were returned.

4.4 Performance Measure

For classification experiments, all performance results are reported in terms of “classification

accuracy,” which is the percentage of test documents that were assigned to the correct

category by the classifier. For LBD experiments, performance results are reported in terms

of the relevance and novelty “score,” which is defined in Section 3.5.
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Chapter 5

Classification Results

This chapter details how the output from each dimensionality reduction technique affected

the ability of several classifiers to successfully categorize documents in the corpuses dis-

cussed in Section 4.1. Results are presented in order from the simplest classifier, the kNN

classifier, to the more complicated Linear and Quadratic classifiers. This section concludes

with visualizations of the dimensionally reduced data in addition to some final supporting

evidence.

Throughout this chapter, results for each of the five dimensionality reduction techniques

are presented and discussed. The term “None-Rand” is used to refer to cases when no di-

mensionality reduction is applied and instead d random features are chosen from the original

features. The term “None-Sort” is used to refer to cases when no dimensionality reduction is

applied and the d best features (based on their average TF-IDF score as defined in Equation

3.1) are chosen from the original features.

5.1 k-Nearest Neighbor Classification

5.1.1 Varying Number of Dimensions

(fixed k = 9)

Figure 5.1 shows how performance is affected by altering the number of dimensions. The

number of nearest neighbors has been fixed at 9 (Figure 5.6 later shows that all five DR

techniques performed within a small deviation of their peak performance on these data sets
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Figure 5.1: kNN: % Correctly Classified vs. Number of Dimensions (log scale), k=9
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when 9 nearest neighbors were used).

Though the techniques do comparatively poorly when the number of dimensions is small,

they quickly improve so that in most cases they plateau at approximately peak performance

when the number of dimensions being reduced to is 10. This performance is maintained until

the data is projected into over 100 dimensions. At this point, adding new dimensions adds

more noise than useful information which causes the classifier to quickly become confused. It

is interesting to note that MDS and Isomap, however, are relatively unaffected by the increase

in the projection space beyond 100 dimensions. This ability to recognize dimensions from

which no benefit can be derived is a property of MDS. Instead of producing noisy extra

dimensions, higher dimensions are essentially constant and hence do not affect classification.

Since Isomap makes use of MDS as a final step, it inherits this benefit.

On Science News-8 (5.1a), all five dimensionality reduction techniques perform similarly.

This relationship is present in the smaller Science News-2 and Science News-4 Separated

variations as well. As the number of number of categories decreases from 8 to 4 (5.1c) to 2

(5.1b), peak accuracy rises from 80% to nearly 100%. This dramatic difference in accuracy

is a product of confusion between similar categories in the data sets with more categories.

Evidence of confusion occurring between such categories under these parameters is presented

later in Table 5.1. The two categories in Science News-2 are very well separated which enables

dimensionality reduction techniques to produce embeddings which lead to extremely high

classification accuracy in very few dimensions.

For the most part, the Science & Technology data set (5.1f) is consistent with the Science

News data sets. Overall performance is lower across the board, likely due to the more

difficult nature of the data set with regards to classification. However, it is interesting to

see that PCA and in particular LDM, the SVD-based techniques, perform especially poorly.

LLE’s performance is also poor. It is likely that these techniques are more sensitive to

the relatively small amounts of data per observation - both the Google News (5.1e) and

the Science & Technology data set have relatively short articles in comparison with Science

News. Despite this common property, significantly different performance occurs on each

of the two data sets. On Google News, peak performance reaches almost 90%. This can

be attributed to the data set having just five reasonably well-separated categories fairly
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evenly split among over 3,000 articles. Science & Technology, on the other hand, has seven

categories and is unevenly distributed over 658 articles, less than a quarter of the size of

Google News - which means its training set for classification is smaller and noisier. These

properties make Science & Technology’s categories much more difficult to distinguish. These

two disadvantages result in a significant performance reduction due to increased confusion.

The difficulty with overlapping categories is not limited to Science & Technology. When a

subset of Science News which contains only portions of closely related categories is tested

(5.1d), PCA and LDM’s performance are substantially lower than on the complete Science

News corpus.

When dimensionality reduction is not applied and all dimensions are used, performance

is quite high across all data sets. When given all of the dimensions (not shown on the

graphs), the classification performance for kNN on Science News-8 is 82%, Science News-4

Separated is 87%, Science News-4 Overlapped is 86%, Google News is 91%, and Science &

Technology is 65%. All of these classification accuracies exceed the performance achieved

when dimensionality reduction is performed, but only slightly. This is exciting because it

shows that these dimensionality reduction techniques are able to reduce the encoded data

while maintaining much of the important information that was present in the original data’s

high-dimensional space. Generally peak performance occurs in the neighborhood of just 30

dimensions which is tiny in comparison to the 8,000-20,000 dimensions, depending on the

corpus, that are fed to the classifier when no dimensionality reduction is performed.

The None-Rand and None-Sort techniques, for which dimensionality reduction is not

applied but where the number of dimensions is limited to the number of dimensions the

DR techniques are outputting, perform worse than most DR techniques on average. They

generally perform at or below the worst DR performance when the number of dimensions is

low, though these both typically start to catch up to MDS and Isomap by 1,000 dimensions.

MDS and Isomap provide consistently high performance across all six data sets. They

are also relatively flexible with regards to the number of dimensions that are chosen in order

to obtain high classification accuracy with the kNN classifier. In all cases, they approach the

performance of doing classification using all features without performing any dimensionality

reduction.
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Table 5.1: CM: Google News reduced w/MDS to 1 dimension (k=9) – 51.9% Accurate
Predicted Category

Category Business Health S&T US News World News

Business 44.3 19.1 28.8 6.0 1.8
Health 12.9 54.8 6.0 19.1 7.1

Science & Technology 27.9 16.5 50.3 4.7 0.7
US News 2.2 15.6 1.8 51.6 28.7

World News 0.4 6.1 0.6 35.2 57.7

In contrast, Table 5.1 shows a confusion matrix for MDS with only one dimension which

yielded a much lower accuracy (51.9%). Every category does mediocre with accuracies for

each category close to 50%. This is understandable considering the extreme reduction of

dimensionality. Furthermore, it is interesting to note that categories are indeed confused with

closely related categories. For example, US News and World News have substantial overlap -

almost a third of the mistakes in these categories are due to each other. This may be a result

of similar language used to describe both scopes of news. Another interesting overlap occurs

between Business, Health, and Science & Technology. This indicates a believable connection

between these categories.

Table 5.2: CM: Google News reduced w/MDS to 30 dimensions (k=9) – 87.7% Accurate
Predicted Category

Category Business Health S&T US News World News

Business 81.1 3.0 8.1 4.1 3.7
Health 0.2 91.9 2.1 3.1 2.7

Science & Technology 5.3 2.3 89.0 2.3 1.0
US News 2.5 0.3 0.4 87.8 8.9

World News 2.4 0.7 0.6 7.6 88.7

As the number of dimensions increases, confusion is steadily reduced. In particular, Table

5.2 shows a confusion matrix for MDS with Google News where the number of dimensions has

increased to 30. Here, classification accuracy improved from the 51.9% of Table 5.1 to almost

90%. Adding the extra dimensions allowed the classifier to almost completely separate the

Health category from both Business and US News categories. Confusion between those two

pairs improved by an order of magnitude over other improvements. However, despite these

improvements in performance, sources of confusion have not been completely eliminated.
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Business and Science & Technology are still somewhat confused, as are US News and World

News.

Table 5.3: CM: Google News reduced w/LDM to 20 dimensions (k=9) – 26.2% Accurate
Predicted Category

Category Business Health S&T US News World News

Business 21.9 15.9 17.8 30.7 13.6
Health 15.1 23.9 22.8 25.1 13.1

Science & Technology 16.7 22.0 22.0 25.4 13.9
US News 17.1 13.1 14.9 38.1 16.8

World News 13.5 16.8 16.2 30.2 23.3

Table 5.3 is a confusion matrix that explores LDM’s poor performance on Google News.

As Figure 5.1e showed, LDM was still performing little better than chance (20%, or one in

five for this data set) when embedding into 20 dimensions, even though MDS, Isomap, and

LLE obtained accuracies between 75% and 85% with just five dimensions. Table 5.3 shows

a near random distribution of the predicted categories for each row, suggesting that LDM

has not correctly found an embedding for this large data set of relatively short articles.

This section showed that while varying the number of dimensions has a significant impact

on performance, there is a reasonable window in which near-peak performance is achieved.

Furthermore, each technique is, for the most part, consistent across each data set and the

best performers, with respect to the kNN classifier and varying the number of dimensions,

were MDS and Isomap.

5.1.2 Varying Number of Nearest Neighbors

(fixed d = 30)

Figure 5.2 shows how performance is affected by altering the number of nearest neighbors

being considered by the kNN classifier. The number of dimensions the input is reduced to

has been fixed at 30 (Figure 5.6 shows that all five techniques performed within a small

deviation of their peak performance when the data was embedded into a 30-dimensional

space). In addition to the DR techniques, None-All is also tested. This approach uses all of

the 10,000+ features as they are in the encoded term document matrix.
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Figure 5.2: kNN: % Correctly Classified vs. Number of Nearest Neighbors (log scale), d=30
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Even with just a single neighbor (k = 1), performance is strong. This demonstrates that

the dimensionality reduction methods are closely mapping documents to other documents in

their class. This performance is maintained until the number of neighbors being considered

crosses some data set-dependent threshold. Beyond this threshold, adding more neighbors

confuses the classifier. This occurs because so many neighbors are being considered that

documents in nearby classes are being is chosen in large numbers. Performance degrades

slowly as the classification accuracy regarding documents towards the “edge” of their classes

erodes. As the number of neighbors being considered grows extremely large, classification

accuracy drops very rapidly as classes with many documents start to be the dominant pre-

diction. At the extreme, if the number of nearest neighbors being considered were equal

to the number of documents in the training set, then the largest category would be chosen

every time.

Each data set has fairly consistent results. The Science News variants (5.2a, 5.2b, 5.2c,

5.2d) start out near peak performance and improve slightly as more neighbors are consid-

ered before falling off when the number being considered grows too high. The Science &

Technology data set (5.1f) follows a similar pattern, but its performance does not fall off

as sharply when too many neighbors are considered. This suggests that the data set’s class

boundaries are not as clearly defined as those for categories in the Science News data sets.

In other words, classes are already confused when k is low, and increasing k thus has less of a

negative effect. PCA’s and LDM’s performance continues to lag as seen earlier in Figure 5.1.

Finally, Google News (5.2e) somewhat maintains its plateau of good performance throughout

all numbers of nearest neighbors shown on this figure. This is a result of the comparatively

large categories in the data set. With an average of over 600 documents per category, it is

much more tolerant of high numbers of nearest neighbors than data sets like Science News-8

(5.2a) which has only a fifth as many documents per category as Google News.

MDS and Isomap provide consistently high performance across all six data sets. They

are also relatively flexible with regards to the number of nearest neighbors which are chosen

in order for the kNN classifier to effectively distinguish between documents in each category.

In all cases, they approach the classification accuracy achieved if dimensionality reduction

is not performed. PCA performs slightly better on Science News-8, but its relatively poor
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performance on the Science & Technology data set makes it less attractive than MDS or

Isomap.

This section showed that varying the number of nearest neighbors only has a significant

impact on performance if a particularly high number of nearest neighbors is chosen such that

it is approaching the size of the average category in the corpus. Up through that point, all

values work reasonably well. Furthermore, each technique is, for the most part, consistent

across each data set and the best performers, with respect to the kNN classifier and varying

the number of nearest neighbors, were MDS and Isomap.

5.2 Linear Classification

Figure 5.3 shows how performance of the linear classifier is affected by altering the number

of dimensions. The linear classifier performs quite well once some relatively small dimension

threshold is surpassed. Representations using less than 15 dimensions perform poorly, but by

30 dimensions every DR technique achieves 75% or higher accuracy on the simpler Science

News variants (5.3a, 5.3b, 5.3c) and Google News (5.3e) with the exception of LDM. As

the number of dimensions increases, all techniques perform increasingly better and approach

perfect accuracy. On Science News-2, 99% accuracy is achieved by all techniques except LDM

with just 3 dimensions, although no technique reaches 100% accuracy until the number of

dimensions is in the range of 50 to 300. Similarly a number of techniques reach approximately

90% effectiveness by 50 dimensions on Science News-4 Separated, but are never able to

achieve perfect accuracy, though 99% of documents are correctly classified by 500 dimensions.

The linear classifier’s performance consistently improves as new dimensions are added

because it is very effective at minimizing the impact of noise on its results. Furthermore, it

is still able to gain a little from each new dimension. Essentially, the classifier automatically

recognizes, using the training data, when a dimension does not helpfully discriminate between

categories. Though the linear classier can do quite well with relatively few dimensions, its

performance can almost always be improved or maintained by adding additional dimensions.

However, there may be limits on exactly how far the linear classifier can expand this behavior

[32]. In particular, results with None-All yielded extremely poor classification performance
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Figure 5.3: Linear: % Correctly Classified vs. Number of Dimensions (log scale)
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beyond the 1,000 dimensions (on the order of 20% accuracy). There was so much noise in

the greater than 10,000-dimensional space in which the unreduced data lies that the classifier

was unable to obtain any useful information. If the number of dimensions is limited with

the None-Rand and None-Sort techniques, performance improves. They generally perform

at or below the worst DR performance when the number of dimensions is low, though on

harder data sets like Science News-4 Overlapped and Science & Technology, these techniques

outperformed PCA and LDM.

On Science News, no single dimensionality reduction technique stands out. PCA does

perform slightly better on Science News-8, but only by about 5%, and it is approximately

equivalent on the smaller Science News data sets (except Science News-4 Overlapped). On

the more difficult Science & Technology and Google News data sets, MDS and Isomap

outperform other techniques, though on Science & Technology even these techniques require

100 dimensions to reach 80% accuracy, and 200 dimensions to reach 90% accuracy.

Table 5.4: CM: Science News-8 reduced w/Isomap to 1 dimension – 44.6% Accurate
Predicted Category

Category Anthro. Astro. Behavior Earth Life Math Medical Physics

Anthropology 33.3 3.7 1.9 11.1 29.6 11.1 7.4 1.9
Astronomy 0.0 84.3 0.0 0.0 0.0 0.8 0.0 14.9

Behavior 11.1 0.0 18.1 2.8 15.3 2.8 50.0 0.0
Earth Sciences 10.2 21.2 8.0 13.9 9.5 9.5 3.6 24.1

Life Sciences 17.6 1.0 17.6 4.9 22.4 11.7 21.0 3.9
Math 13.3 3.3 3.3 26.7 6.7 31.7 0.0 15.0

Medical 1.8 0.4 17.9 0.0 8.2 0.7 71.1 0.0
Physics 1.7 31.4 0.0 10.2 6.8 5.9 0.8 43.2

Table 5.4 shows a confusion matrix for Isomap embedding Science News-8 into 1 di-

mension and classifying with a linear classifier. This embedding yielded a relatively low

accuracy because the 1-dimensional embedding did not contain enough information for the

linear classifier to separate all eight categories. This confusion matrix shows a lot of general

confusion resulting from the extreme reduction of the data to just one dimension. However,

some interesting relationships are still evident in the midst of this general confusion. The

Astronomy and Medical categories both do relatively well and are the only categories to

achieve 50% accuracy. Their success can be attributed to the relative isolation of the former,
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and the sheer size of the latter (Medical contains over a quarter of the total articles in the

corpus and so there is more information about what documents in its category looks like).

Even more interesting, several relatively focused areas of confusion present themselves.

Medicine and Behavior are particularly confused (respectively 17.9% and 50.0%), as well

as Physics and Astronomy (31.4%, 14.9%). These two confusions are the only significant

mistakes made for the two categories which did particularly well overall and can be attributed

to significant overlap with these fields. Overlap is also the probable cause for other notable

confusions occurring between Anthropology and Life Sciences (29.6%, 17.6%), Physics and

Earth Sciences (10.2%, 24.1%), and Behavior and Life Sciences (15.3%, 17.6%). On the

other hand, categories for which overlap is improbable have very little confusion between

them. Examples of this include Astronomy and Behavior (1.9%, 0.0%), Astronomy and Life

Sciences (0.0%, 1.0%), and Medicine and Physics (0.0%, 0.8%).

Table 5.5: CM: Science News-8 reduced w/Isomap to 200 dimensions – 90.5% Accurate
Predicted Category

Category Anthro. Astro. Behavior Earth Life Math Medical Physics

Anthropology 87.0 1.9 5.6 1.9 1.9 1.9 0.0 0.0
Astronomy 0.0 95.9 0.0 0.8 0.0 0.0 0.0 3.3

Behavior 1.4 0.0 93.1 0.0 2.8 0.0 1.4 1.4
Earth Sciences 1.5 0.7 0.0 89.1 7.3 0.0 0.7 0.7

Life Sciences 2.0 2.0 1.5 2.9 82.9 0.0 7.3 1.5
Math 1.7 0.0 0.0 3.3 3.3 91.7 0.0 0.0

Medical 0.4 0.4 1.4 0.4 4.3 0.0 93.2 0.0
Physics 0.0 0.8 0.8 2.5 0.8 0.0 1.7 93.2

Table 5.5 shows a confusion matrix for Isomap embedding Science News-8 into 200 di-

mensions and classifying with a linear classifier. This embedding yielded a much higher

accuracy than with the 1-dimensional embedding shown in Table 5.4. This confusion matrix

shows very similar confusions, albeit in much smaller quantities. The Astronomy and Med-

ical categories are still the most accurately classified categories, though the other categories

have made more significant improvements.

Categories which were being confused before are still being confused, but all of the ones

which used to have the worst confusion have been addressed. This is consistent with the

linear classifier’s performance trend in which the biggest difference is made early on, and
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smaller and smaller gains are made by adding additional dimensions. Confusions which used

to be significant includes Anthropology and Life Sciences (now just 1.9%, 2.0%), Physics and

Earth Sciences (2.5%, 0.7%), and Behavior and Life Sciences (2.8%, 1.5%). Furthermore,

categories for which overlap is improbable still have very little confusion between them,

as expected. These pairs included Astronomy and Behavior (0.0%, 0.0%), Astronomy and

Life Sciences (0.0%, 2.0%), and Medicine and Physics (0.0%, 1.7%). Despite this enormous

reduction in confusion and successful maintainence of well-separated categories, some other

confusion persists. Though not the most significant source of confusion in the 1-dimensional

reduction, Earth Sciences and Life Sciences (10.2%, 6.8%) and Life Sciences and Medical

(11.2%, 8.2%) now exhibit the most significant sources of confusion. Further increasing the

number of dimensions to five to six-hundred greatly reduces the remaining confusion so that

the overall accuracy goes to 99%, as seen in Figure 5.3.

This section showed that the linear classifier consistently achieves high accuracy on all

data sets without being overly sensitive to the number of dimensions used. Beyond just a

few dimensions, increasing the number of dimensions in small quantities has a small impact

on performance. All techniques follow this behavior and, for the most part, are consistent

across each data set. It was also shown that dimensionality reduction is a prerequisite before

the linear classifier is capable of accurately classifying this kind of data because it performs

poorly when the input is extremely large. The best performers, with respect to the linear

classifier, were MDS and Isomap.

5.3 Quadratic Classification

Figure 5.4 shows how performance of the quadratic classifier is affected by altering the

number of dimensions. Similar to the linear classifier, the quadratic classifier performs quite

well once some relatively small dimension threshold is surpassed. In theory it should perform

better than the linear classifier, and in some ways it does - it reaches over 95% accuracy

on Science News with approximately 100 dimensions while it takes nearly 5 to 10 times

as many dimensions for the linear classifier to exhibit the same performance. Very small

representations which use fewer than approximately 5 or 10 dimensions perform poorly, but
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Figure 5.4: Quadratic: % Correctly Classified vs. Number of Dimensions (log scale)
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in slightly higher dimensions every technique achieves 80% or higher accuracy on the simple

Science News variants (5.4a, 5.4b, 5.4c) and Google News (5.4e). Performance peaks much

earlier than the linear classifier, but performance degrades much faster too.

This degradation in performance is related to the complexity of the quadratic classifier.

As noise increases in higher dimensions, the quadratic classifier performance suffers greatly.

One potential source of this error is a computational issue. With many dimensions, the

class-specific covariance matrices (see Section 3.3) have less and less variance which causes

the quadratic classifier to encounter numerical issues when inverting determinants of those

matrices. This leads to instability and poor class likelihood predictors. A second problem

is that the quadratic classifier needs a larger training set to adequately learn its larger set

of parameters. Larger corpuses address both of these problems. This is primarily evident in

Google News which despite one significant dip, flows cleanly from one point to the next and

even peaks at 500 dimensions.

Much like the linear classifier, no single dimensionality reduction technique stands out on

Science News. Isomap is consistently the best performer on all data sets, though it separation

from less effective techniques is extremely small. LLE stands out on Google News because

it has a barely perceptible dip, when compared to the degradation in performance suffered

by MDS and Isomap, as the number of dimensions increase until its peak performance.

By approximately 500 dimensions, all techniques have reached peak performance, though

performance drops quickly to below 40% as the next 200 dimensions are added.

The quadratic classifier achieves the strongest performance in the fewest number of di-

mensions, but it is extremely sensitive to the number of dimensions used, making it more

difficult to use. Inside its optimal performance window, Isomap and MDS consistently out-

perform other techniques. On the tougher Science & Technology and Google News data

sets, the classifier is more confused by reductions produced by SVD-based algorithms like

PCA and LDM. In contrast, eigenvalue decomposition techniques like MDS, Isomap, and

LLE all achieve comparable results on each data set except Science & Technology where

LLE flounders some. Overall, Isomap has the best and most consistent performance across

all data sets with the quadratic classifier.
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Figure 5.5: Eigenvalues Relative Value Plot

5.4 Supporting Evidence

5.4.1 Eigenvalues Plot

Figure 5.5 shows the relative values of the eigenvalues obtained by each dimensionality

reduction technique on each data set. An eigenvalue plot shows the relative value of each
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eigenvalue. The y-axis is the value of the eigenvalue relative to the biggest eigenvalue. The

x-axis is the number of the eigenvalue and the y-axis is the value of the eigenvalue relative

to the max eigenvalue (thus ranging from 1 to the last scaled eigenvalue). Therefore, the

x-axis ranges from 1 to the last eigenvalue. The eigenvalues arranged in decreasing order of

importance. An eigenvalue plot typically looks like an exponential decay. This is because

the first eigenvalue yields the greatest amount of information and each successive eigenvalue

yields less and less information. This exponential decay forms an “elbow” in the graph.

Typically, the elbow is the location at which future eigenvalues do not hold much more

useful information.

The first interesting thing to note is that the Science News-2’s eigenvalue plots have

their elbow pretty clearly at 2 dimensions while elbows on the eigenvalue plots for Science

News-8 are somewhat less distinct. This is reasonable because Science News-8 has more than

twice as many articles in four times as many categories. Therefore, it makes sense that it

would probably take more dimensions to accurately represent the data. When compared to

Google News, the elbow is even larger and less distinct, though in practice these experiments

have found that a fairly aggressive (lower number of dimensions) dimensionality choice on

the Google News eigenvalue plot elbow would be sufficient. Figures 5.1 and 5.3 show that

Google News and Science News peak at approximately the same number of dimensions when

reducing data for kNN and linear classification. However, the quadratic classifier shown

in Figure 5.4 requires slightly more dimensions for peak performance, but using the same

number of dimensions would yield only a small difference in overall accuracy.

Like Google News, Science & Technology also has fairly non-distinct elbows. However,

in this case what is really interesting is the eigenvalue plot for LDM. LDM has a somewhat

linear plot instead of the usual exponential decay. This indicates that LDM is unable to find

a meaningful eigenvalue decomposition with which it can produce an effective embedding

with. This is probably a major factor in why LDM has such low performance on the Science

& Technology data set.
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Figure 5.6: kNN: % Effective Boundaries
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5.4.2 kNN Effective Boundaries

Figure 5.6 shows the regions of in which two key parameters for kNN (the number of nearest

neighbors and the number of dimensions) can be varied without significantly deviating from

the maximum performance. A significant deviation is considered to be more than 10% away

from the peak performance achieved by each dimensionality reduction technique. The pairing

of parameters at which peak performance occurred is labeled as well for each dimensionality

reduction technique. This graph shows that these dimensionality reduction techniques are

relatively insensitive to parameter tuning on these data sets when performing classification

with kNN. It also shows that MDS, and to a lesser extent Isomap, perform well under an

especially large range of parameter specifications.

5.4.3 Tuning Parameter Choice for Isomap and LLE
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Figure 5.7: Varying DR Tuning Parameter (k=9, d=30)

Figure 5.7 shows how dimensionality reduction techniques which require a tuning pa-

rameter react to changes in that parameter. The two techniques being considered in this

research are Isomap and LLE. These tuning parameters are explained in Section 3.2.2.

For both techniques, the tuning parameter had only a very small effect on the outcome,

though generally the higher the number of neighbors considered (the tuning parameter), the

more stable and slightly better performance was achieved. Choosing only a single neighbor

had poor performance, but increasing to just three gained the vast majority of the perfor-
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mance difference between the worst performing value of 1 and the best performing value.

Based on these results, all experiments in this paper which use Isomap or LLE have their

tuning parameter fixed at a value of 10 unless otherwise noted.

5.4.4 Data Set Visualization

Intuition helps one reason about which categories may or may not overlap with others.

This section helps visually describe the relationships between the documents in different

categories. This is done by performing dimensionality reduction on the corpus and projecting

the data into a 2-dimensional space. The documents in this 2-dimensional space are then

graphed in a scatterplot. Each document is marked with some marker which identifies what

category it belongs to. These scatterplots show how the two most differentiating dimensions

for each dimensionality reduction technique on each data set separate the data.

Figure 5.8 shows the 2-dimensional embeddings for each dimensionality reduction tech-

nique applied to Science News-2 which consists of two well-separated categories: astronomy

and medical. Each technique is able to produce a 2-dimensional embedding which clearly

distinguishes the majority of documents in each class. Most points are clustered near their

own class, though the ones on the boundary and very near the other category’s points is

probably a minor source of error in classification experiments on this data set.

Figure 5.9 shows the 2-dimensional embeddings for each dimensionality reduction tech-

nique applied to Science News-4. Astronomy and Medical are still far apart, which is expected

since Figure 5.8 showed that the could be well-separated. Life Sciences is sandwiched in be-

tween Medical and Earth. with results in the confusion matrix for MDS mapping Science

News-4 to 3 dimensions for the kNN classifier.

The separation of Life Sciences from Astronomy is consistent with the results for that

confusion matrix as well. Furthermore, the small number of mistakes between Astronomy and

Earth are likely the result of the small number of Earth documents which can be seen mixing

in with the bottom of the Astronomy section in the MDS portion of the figure. The number

of mistakes between Medical and Life Sciences was greater, and this is validated by the

more significant overlap of those categories on this scatterplot. Finally, Earth Sciences and

Life Sciences had significant confusion and this confusion seems reasonable given that MDS
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Figure 5.8: Science News-2: 2-D Embeddings
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Figure 5.9: Science News-4 Separated: 2-D Embeddings
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mapped the two categories practically on top of each over. MDS does do quite well as the

number of dimensions increase because though these categories are not completely separated

in two dimensions, the new dimensions introduce new ways to differentiate documents from

different categories which generally improves performance as seen in Figure 5.1.

Figure 5.10 shows the 2-dimensional embeddings for each dimensionality reduction tech-

nique applied to Science News-8. Though only in 2-dimensions, the scatterplot is rather

busy due to the relatively large number of categories in Science News-8. This representation

of the data set helps explain the confusion encountered when performing linear classification

on Isomap’s reduction of this data set. This confusion is described in Table 5.4 for the case

where Isomap embedded the data in a single dimension and in confusion matrix 5.5 for the

case when Isomap embedded the data in 200 dimensions.

Astronomy and Medical are still very well separated, which is expected since figures 5.8

and 5.9 showed that this fact is true. Astronomy and Medical, the two best performing cate-

gories on this input, were confused over Physics and Behavior. This confusion is also present

in the scatterplot - Behavior articles are present around various parts of the Medical articles,

and the same with the Physics and Astronomy articles. The significant confusion between

Anthropology and Life Sciences is backed by the scatterplot which shows the Anthropology

to be right on top of many Life Sciences articles - this same phenomenon is occurring in other

categories which experienced similar problems with the classification of the 1-dimensional

Science News-8. This overlap in 2-dimensions indicates that 2 dimensions are not sufficient

for representing this data set with the dimensionality reduction techniques utilized by this

research.

Figure 5.11 shows the 2-dimensional embeddings for each dimensionality reduction tech-

nique applied to Google News. This scatterplot has very dense groups of points thanks to

the sheer size of the Google News data set. This representation of the data set helps explain

the confusion encountered when performing classification on MDS’s reduction of this data

set with a kNN classifier. This confusion is described in confusion matrix 5.1 for the case

where MDS embedded the data in a single dimension.

Having just one dimension greatly complicated the classifier’s job because many of the

points overlap even more if just the x-axis is being used to distinguish categories. With this
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Figure 5.10: Science News-8: 2-D Embeddings
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Figure 5.11: Google News: 2-D Embeddings
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is mind, it seems quite reasonable that the classifier had a good deal of trouble distinguishing

US and World News. Business and Science & Technology are practically on top of each other

so this contributes to the confusion between these two. Furthermore, Health articles are also

in the midst of the Business and News section which causes it to be miscategorized under

all of those categories.

Figure 5.12 shows the 2-dimensional embeddings for each dimensionality reduction tech-

nique applied to Science & Technology. This scatterplot is interesting because it is much

less clear where class boundaries lie than with any other data set. This difficulty to distin-

guish much in these dimensions hints that in this data set the categories are not as clearly

separated as the others.

MDS and Isomap have some structure, but the points are still pretty loosely organized

and very frequently mix with other groups. PCA also has some structure, and the Anti-

Submarine class is pretty tightly packed. LLE may have some structure, but it is very difficult

to discern exactly what that might be in these two dimensions. This is probably why LLE

performs rather poorly with the kNN classifier as seen in figures 5.1 and 5.2. Finally, LDM

spreads the documents out along a semi-circle shape, but unfortunately all of the documents

seem to be spread without a clear distinction as far as their category. This may indicate that

LDM is not able to effectively differentiate between documents in separate classes. This is

apparent in results with each classifier on this data set because LDM’s routinely performs

the worse than other techniques on this data set.

This section provided visual evidence regarding the ability of each dimensionality reduc-

tion technique to separate classes. The visualizations reinforce reasoning about why Science

News-2 was easy for the classifiers to achieve high classification accuracy on and why others

like Science & Technology were much more difficult. These visualizations also helped validate

which categories are more difficult to distinguish from one another.

5.5 Analysis

For a given number of dimensions, applying dimensionality reduction significantly improved

accuracy versus not applying DR. Furthermore, the best DR techniques were able to achieve
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Figure 5.12: Science & Technology: 2-D Embeddings
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a high degree of accuracy in just a few dimensions. MDS and Isomap were consistently the

best and most reliable of all of the techniques. Interestingly, their advantage is even more

pronounced on more difficult corpuses such as Science & Technology and Science News-4

Overlapping.

5.5.1 Impact of the Dimensionality Reduction Technique

Every dimensionality reduction technique gave good classification performance in most cases.

MDS and Isomap were the most reliable dimensionality reduction techniques across all five

data sets. They came very close to the performance of just keeping all dimensions with

kNN (e.g. no dimensionality reduction) which is impressive since in most cases this level

of performance is reached with less than 50 dimensions. In addition, for both the kNN

and linear classifiers, the DR techniques typically outperformed the None-Rand and None-

Sort techniques with the same number of dimensions. Performing no DR and keeping all

dimensions with the linear classifier produced extremely poor performance as described in

Section 5.2.

All dimensionality reduction techniques were also fairly insensitive to the number of

dimensions being projected into as well as the number of nearest neighbors for the kNN

classifier. This is illustrated by Figure 5.6 which shows that all techniques have strong

classification performance across a large spread of parameter values. MDS and Isomap have

the largest area in which they perform well.

MDS and Isomap also exhibit the best performance with a very low number of dimen-

sions (in the one to five dimension range). The only exception to this is with the linear

classifier. On Science News PCA does the best, especially on Science News-8, but overall it

is less consistent than Isomap and MDS. Results with LDM were also interesting but for the

opposite reason - it had been expected to perform quite well but basically failed on more

difficult data sets.
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5.5.2 Impact of the Classifier

All three classifiers were able to obtain good classification accuracies under the right condi-

tions. The linear classifier had the best performance across all five data sets. However, to

reach its peak performance on all data sets other than Science News-2, it had to use over

approximately 500 dimensions. When combined with DR, it was very consistent: all data

sets appeared to approach nearly 100% as the number of dimensions grew to the maximum

number which the data could be projected into. Performance with the linear classifier usually

matches the peak performance of the kNN classifier by approximately 20 to 30 dimensions,

though on Google News it requires more dimensions to match kNN’s peak performance than

kNN needed (however, it still eventually meets that peak performance and exceeds it as more

dimensions are added).

The quadratic classifier is also able to exceed most of kNN’s peak performances in fewer

dimensions than kNN needs to accomplish those peaks. It also reaches its peak performance

around 100 dimensions - much fewer than the the 500 needed by the linear classifier for

its peak performance. The peak performances between the linear and quadratic are fairly

similar, though unfortunately the quadratic classifier is much more sensitive with regards to

the number of dimensions. Furthermore, the quadratic classifier is less reliable for some DR

techniques. Overall, amongst the three classifiers considered, the linear classifier appears to

be the best all-around technique for classification in this domain.
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Chapter 6

LBD Results

This chapter examines the quality of results obtained from performing LBD (as described in

Section 3.5) after reducing the data using some dimensionality reduction technique. To do

so, Section 6.1 first evaluates and calibrates the experimental procedure for automatically

scoring a candidate association between two documents. Section 6.2 then uses this scoring

metric to measure the impact of dimensionality reduction on the associations that are found.

Finally, Section 6.3 summarizes and analyzes the results.

Each dimensionality reduction technique finds pairs of documents from different cate-

gories. These pairs are identified based on which documents are closest together in terms of

Euclidean distance in the dimensionally reduced matrix. Each technique finds identifies be-

tween 10, 20, 50 and 100 closest pairs. The details of this process were previously presented

in Section 3.5.

Once pairs are identified, they are scored using the keywords identified by the process

explained in Section 3.5.4. A higher score indicates that there is a stronger connection

between the documents. This process was previously presented in Section 3.5.4.

The median score from each pair count (10, 20, 50, and 100) is then averaged and used

as a benchmark for analyzing each dimensionality reduction techniques effectiveness. To

compare effectiveness across different levels of reduction, the number of dimensions which

the data is reduced to is varied from 5 to 71.
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6.1 Validating and Calibrating Automated Scoring

Ideally, a candidate association between two documents would be evaluated for relevance

and novelty by human participants in a double blind study. Since such a study was not

possible in the context of this work, LBD quality for one document pair is instead measured

by extracting keywords from the two documents (Section 3.4) and then using those keywords

to query Google and compute a novelty score from the results (Section 3.5). Both of these

processes are error-prone, and mistakes in either may influence the overall LBD assessment.

Consequently, the next two sections evaluate each of these two steps, identify initial problems,

and develop solutions that are used in the final LBD analysis.

6.1.1 Keyword Extraction Assessment

Descriptive keywords are essential to the LBD process presented by this research. Keyword

extraction is performed as specified in Section 3.4. The process is demonstrated with the

following example.

This assessment focuses on the results from a document entitled Olestra: Too good to be

true? Researchers flush out health risks of fake fat by Kathleen Fackelmann from the Science

News corpus. This article has been included in the appendix (see Appendix C.2). Similar

results were found with other articles.

Naive Version

The naive version of the keyword extraction process identified the most highly weighted

terms, but a number of the top terms for each document were often proper nouns. Such

proper nouns are not particularly helpful for finding related content since they were often

names of people, companies, or places rather than general content descriptors. For instance,

applying the naive keyword extractor to the Olestra example found many highly ranked

proper nouns among the top 10 keywords including “Proctor,” “Gamble,” and “FDA,” all

of which appeared in the top 5 keywords.
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Capitalization-Based Proper Noun Removal

The first iteration of the proper noun removal algorithm removed all words which were

capitalized in the middle of a sentence. In addition, if a word was considered to be a proper

noun in any document in a corpus, it was considered to be a proper noun in every document.

This caused problems because sometimes common words appeared as a person’s name or in

the title of a paper being cited, etc. Thus words like “gamble” (from Proctor and Gamble)

would always be considered as a proper noun. Though the impact of this problem for a small

set of documents would be rather trivial, the aggregate impact of thousands of articles in a

data set caused many legitimate nouns to be considered as proper nouns.

Capitalization and Frequency-Based Proper Noun Removal

The improved version of the proper noun removal algorithm used frequency statistics to

prevent reasonable words from being considered as proper nouns in all documents. To

be considered a proper noun in all documents, a word has to first pass the capitalization

test in at least half of its occurrences (excluding occurrences at the beginning of sentences,

where a word is always capitalized). This final tweak led to a much more effective keyword

identification methodology.

Table 6.1 compares the final improved keywords to the ones extracted by the naive

method. Keywords containing words like FDA, Harvard, Proctor, Gamble, scientific (stemmed

to science), and Olestra have been discarded because they appeared to be proper nouns (sci-

ence was capitalized often enough that it was flagged as a proper noun). As these proper

nouns were filtered out, the more descriptive keywords like beta carotene and carotenoid

became the top unigram and bigram keywords.

6.1.2 Novelty Scoring Metric

Once keywords have been extracted from each document in a candidate discovery, they

are used to determine the novelty of that candidate discovery. An informal inspection of

the scores indicated that the computed novelty score is generally a good indicator of the

potential a candidate discovery has. However, some documents are very short or have other
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Table 6.1: Science News Article #25 Top 5 Keywords: Naive vs. Proper Noun Removal
Type Naive Capitalization and Frequency-Based

top scientific evidence beta carotene
bigrams Harvard School macular degeneration

beta carotene potato chip
macular degeneration prostate cancer

FDA Review fake fat

top FDA carotenoid
unigrams carotenoid carotene

Proctor approval
Gamble chip
Olestra fat

complications which make it difficult to extract meaningful keywords. Poor keywords (e.g.,

overly general terms) sometimes lead to skewed novelty scores because bad keywords may

result in an unusually small denominator in Equation 3.32 which causes the novelty score to

be inflated.

Table 6.2 compares several variants of novelty scores for each dimensionality reduction

technique on the Science News-4M data set. Each value is the median score chosen from the

top 20 candidate associations for each DR technique. At left, the column labeled “Raw” holds

the original score as computed by Equation 3.32. This column shows values for PCA and

LDM that are much higher than for the other techniques. Closer inspection revealed that

these values were artificially high due to some documents having poor keyword selection.

For instance, one pair’s keywords included “alike observes” and “deeply colored” for one

document, and “cross cultural” and “fall asleep” for another document. This led to a very

high score because the union of these broad keywords produced a very large number of hits

(and thus a very small value for scoreG), yielding a small denominator and a very large result

for scorenovelty via Equation 3.32.

In general, results showed that a very large fraction of the problematic keywords contained

verb phrases (e.g., “fall asleep”), whereas the most appropriate keywords often seemed to be

noun phrases only (e.g., “beta carotene”). Hence, future work to filter keywords based on

their part of speech within a sentence may be useful.

To enable meaningful analysis of the scores without such part of speech processing, this

project investigated several techniques for handling these problematic keywords, and the
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Table 6.2: Science News-4M: A Comparison of Raw, Thresholded, and Filtered Results
Score Type

DR Raw Threshold = 100 Threshold = 50 Filtered

PCA 97.4 66.9 18.0 18.6
MDS 7.3 6.7 4.4 8.2

Isomap 12.6 11.3 10.8 11.2
LLE 13.1 6.4 6.4 7.5

LDM 64.2 7.7 5.2 5.4
None-All 30.8 24.0 17.25 19.8

results are also shown in Table 6.2. The column labeled “Threshold=100” shows the results

where candidate discoveries with a computed score greater than 100 are automatically re-

moved from consideration (since manual inspection indicated that these were almost always

a result of poor keyword selection). The next column shows results computed with a thresh-

old of 50. Finally, the last column, “Filtered” shows the results obtained when associations

were manually removed if the keywords of either document in a pair appeared to be to be

poor content summaries. This last technique is not practical for large scale experiments,

since it involves manual inspection of the results, but can serve as a baseline for comparison.

The similarity between the filtered results and the thresholded results indicates that thresh-

olding performed reasonably well at automatically removing candidate discoveries with poor

keywords. Thus, the remaining results in this chapter all apply a threshold of 50 to the

candidate associations that are found.

6.1.3 Evaluating Novelty Scores for No DR

To further validate the novelty score computation, this section examines the novelty scores

of None-Rand and None-Sort for varying numbers of dimensions. Table 6.3 compares the

thresholded novelty scores for these methods on the Science News-4M data set, using twenty

candidate discoveries for each technique. As expected, the results show that both None-Sort

and None-Rand performed best when they had access to all of the original dimensions (over

10,000). When limited to only a few dimensions, None-Sort usually outperforms None-Rand

by a small margin.
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Table 6.3: Science News-4M: A Comparison of Variations of No DR
Number of Dimensions

No DR Type 5 8 11 41 71 All

None-Rand 2.5 2.4 3.6 3.8 3.8 24.2
None-Sort 3.4 2.1 3.7 4.1 4.2 24.2

6.2 Assessing DR’s Impact on LBD

This section first presents results which shows the median quality of candidate discoveries

for each DR technique. The number of dimensions and the corpus are varied. Section 6.2.2

then displays the relative effectiveness of each DR technique. Finally, Section 6.2.3 presents

evidence which suggests that each DR technique may have something unique to contribute

to the LBD process.

6.2.1 Evaluating Median Novelty Scores for DR

Figure 6.1 compares the thresholded novelty scores on various data sets. These results are

based on twenty candidate discoveries for each technique.

On Science News-4M PCA performed above all other techniques, while Isomap did

slightly better than other techniques on average. Surprisingly, the other techniques, as

well as None-Sort and None-Rand, were mostly indistinguishable from each other.

Science News-8 was mostly consistent with the results for Science News-4M. However,

Isomap was closer to achieving PCA’s performance in a small number of dimensions. Further-

more, most of the other techniques were even closer to Isomap’s peak performance, except

None-Rand and None-Sort which had significantly worse performance in all dimensions than

the other techniques.

On Google News, PCA and Isomap performed very similarly beyond 5 dimensions. Inter-

estingly, None-Rand and None-Sort outperformed the other DR techniques on this corpus.

Science & Technology had slightly different results. PCA was still the top and most

consistent performer, but LDM performed significantly better than usual and slightly better

than Isomap and LLE which were just below it. MDS, None-Rand, and None-Sort did

relatively poorly and performed substantially worse than the other DR techniques.
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Overall, PCA had the best performance followed by Isomap. Other techniques did well

at times, but were not consistent performers. Often, many of the other techniques were

clumped together and their performance was essentially indistinguishable from each other.

Surprisingly, results using very few dimensions were almost as good as those using 40 to 70

dimensions.

Figure 6.1: Median Novelty Score vs. Number of Dimensions (log scale)
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6.2.2 Evaluating Relative DR Performance

The previous section presented results in terms of raw novelty scores. In a typical use

case, however, a researcher may be more interested in the relative performance of the DR

techniques than in their absolute scores. In addition, the researcher may be willing to

experiment with more than one choice for the number of dimensions to find good candidate

associations.

Figures 6.2, 6.3, 6.4, and 6.5 summarize results for this comparison. Each DR technique

is evaluated based upon the best median score it obtained in the previous section using any

number of dimensions. The value shown for each technique is the fraction that this best score

comprises of the total best scores for that corpus. For example, PCA on Science News-8 has

a best median score of 18.5 in Figure 6.1, compared to the total of the best scores of about

59.7. Thus, PCA is represented in Figure 6.3 by a value of 30% (18.5 divided by 59.7).

These figures contain one additional variant for comparison. The values labeled “None-

All” are similar to None-Sort and None-Rand, but represent the case where all of the raw,

unreduced features are used. Consistent with Table 6.3, the results show that None-All

usually, but not always, out-performs None-Sort and None-Rand, which in these figures use

at most 71 dimensions. Hence, when using unreduced data, more dimensions is better for

LBD. However, comparing None-All against the DR techniques demonstrates that while

None-All compares favorably with some of the DR techniques, PCA and to some extent

Isomap typically do better than None-All.

6.2.3 Candidate Discovery Overlap

The previous section demonstrated that PCA and Isomap tended to produce the best novelty

scores, but other techniques still produced some reasonable scores. Hence, it may be useful

to perform LBD using more than one DR technique – if those techniques tended to find

different associations.

Table 6.4 shows the overlap of one hundred candidate discoveries between different DR

techniques on the Science News-4M corpus. The number indicates how many of the same

discoveries were found by two techniques. For instance, 13% of the candidates found by
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Figure 6.2: Best Median Novelty Score (as fraction of total) for Science News-8

Figure 6.3: Best Median Novelty Score (as fraction of total) for Science News-4M
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Figure 6.4: Best Median Novelty Score (as fraction of total) for Google News

Figure 6.5: Best Median Novelty Score (as fraction of total) for Science & Technology
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Isomap were also found by MDS. Along the diagonal, the number is always 100% because a

technique always finds the exact same results as itself.

This table reveals several interesting results. First, it shows that each technique produces

pairs which largely differ from the other techniques. This means that each technique may

produce worthwhile – and unique – candidate discoveries. Second, Isomap is the only non-

linear technique which overlaps with PCA, the technique which had the best overall LBD

performance. It is interesting to note that Isomap also overlaps with MDS (which it uses as

the last step in its own process). Third, each non-linear technique has significant overlap with

other non-linear techniques but no significant overlap with linear techniques. The reverse is

also true. Finally, no technique has significant overlap with the candidate discoveries found

when DR is not used.

Table 6.4: Science News-4M, 11 dims: % Candidate Discovery Overlap between DR Techniques
DR Type

DR Type PCA MDS Isomap LLE LDM None-All

PCA 100 10 27 4 4 6
MDS 10 100 13 4 7 2

Isomap 27 13 100 17 16 4
LLE 4 4 17 100 12 1

LDM 4 7 16 12 100 1
None-All 6 2 4 1 1 100

6.3 Analysis

Dimensionality reduction was often able to improve the estimated quality of candidate dis-

coveries when compared to not applying DR. However, PCA was the only technique that

consistently did significantly better than None-All. Isomap also yielded consistent perfor-

mance at the level of None-All and sometimes a little better. Both PCA and Isomap were ef-

fective with very few dimensions, while None-All used all of the original 10,000+ dimensions.

The other DR techniques occasionally did well, but were unable to produce consistently good

candidate discoveries. However, despite lower overall scores, different techniques did produce

many unique candidate discoveries, so each technique may have some candidates which can
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contribute to the overall effectiveness of the LBD process by identifying unique and possibly

relevant candidate discoveries.

It is interesting to compare these results with those obtained for document classification.

In both cases, Isomap did well. PCA did well on classification but was not the best. However,

it was the most effective technique at uncovering quality candidate discoveries. This suggests

that classification performance does not directly correlate with LBD performance, although

they appear to be closely enough related to be able to infer possible winners for one task

from the other.

With both classification and LBD, the best techniques needed only a few dimensions

to equal or outperform None-All with all 10,000+ dimensions. These results support this

project’s conjecture that DR can be an effective facilitating technology for multiple text

mining applications.
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Chapter 7

Related Work

Section 7.1 discusses how dimensionality reduction has been previously applied to geometric

and image data. Section 7.2 presents work in the text mining field by collaborators Dr. Dave

Marchette and Dr. Jeff Solka as well as work by others in the field. Section 7.3 describes work

which has used keyword extraction as an integral part of larger text mining and information

retrieval applications.

7.1 DR Applications to Geometric and Image Data Vi-

sualization

In 2000, Tenenbaum, Silva, and Langford illustrated how Isomap could uncover the inher-

ent dimensionality of various complex geometric data using a new dimensionality reduction

technique they termed Isomap [30]. They illustrated the algorithm’s ability to map 698

computer-generated faces in various poses from 4,096 dimensions (pixel count of each im-

age) to a two-dimensional representation (three including the lighting direction). The logical

ordering of faces shown demonstrates that Isomap has found a meaningful low-dimensional

embedding [30].

Isomap has also been used to map a “Swiss roll.” The linear techniques are confused by

the straight-line Euclidean distances because as the roll twists, an inner loop’s point may be

relatively close in Euclidean space to an outer loop’s point, even though the distance along

the roll is quite large. Isomap is able to uncover the correct two-dimensional structure of
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the roll [30].

In 2001, Roweis and Saul published a report explaining LLE and demonstrating its

capability on two data sets [25]. Though they claimed it had similar capabilities to Isomap’s

ability to uncover nonlinear geometric structures, they also showed that LLE took advantage

of local neighborhoods to construct a sparse matrix which could be more easily decomposed

into corresponding eigenvalues and eigenvectors.

7.2 DR Applications to Text Mining

In 2004, Priebe and Solka explored an iterative method for the discovery of interesting rela-

tionships between documents in a corpus [22]. They termed the process iterative denoising.

Iterative denoising recursively encodes and analyzes sub-corpora to focus on the content in

specific areas without interference from other documents in the corpus. An example of the

work was demonstrated on the same 1,047 documents from the Science News data set being

used in this paper’s experiments. The encoding of the data set consisted of 10,906 stemmed

unigrams after stopper words were removed.

Iterative denoising starts by encoding a corpus into a similarity matrix by using weighted

unigram counts. This similarity matrix is used to compute an interpoint distance matrix

which is embedded into a Euclidean space with MDS which is set to keep all numerically

stable dimensions. This Euclidean embedding is reduced with PCA to a smaller space. The

dimensionality of the space is determined with a scree plot. Next, this reduced space is

clustered, typically into halves, using hierarchical clustering. This process is iterated on

new clusters until the user is satisfied with the cluster obtained. Each iteration produces

successively more focused and less noisy sub-corpora. Each pair of documents from different

categories which appear in the same final cluster are potentially interesting. Their association

is further analyzed to determine why it is interesting.

In 2005, Solka, Bryant, and Wegman used minimal spanning trees (MSTs) to analyze

two different corpora of science-related articles [26]. The goal of their research was to use

literature-based discovery techniques to find subtle, unknown relationships between docu-

ments in different categories. They also showed how a minimal spanning tree could be used
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to perform hierarchical clustering on the corpus such that documents in the same categories

would be clustered together. They encoded their corpus by computing a similarity matrix

from the bigram proximity matrix using the Ochai similarity measure. A bigram proximity

matrix enumerates the number of times each pair of words, or bigram, appears in each docu-

ment in the corpus. This encoding was chosen because it yielded good results when analyzed

by Martinez with various classification techniques [21].

Computing the MST is done with Kruskal’s algorithm. An MST helps isolate impor-

tant information which may otherwise be obscured by the complexity of the complete graph

of the relationships between all documents in the corpus. Once the minimal spanning tree

was computed, several methods for finding interesting relationships between documents were

experimented with. First, one could look for the most related articles between categories.

Though this produced some interesting results, other, less direct methods produced some in-

teresting relationships in less obvious ways. Another method was to look for documents near

boundaries between categories. With a minimal spanning tree, finding these was relatively

easy. Finally, articles with similar relationships to a boundary could be explored.

The above techniques were tested on the Science News data set and the Science & Tech-

nology data set. The former consisted of 1,117 articles (slightly more than the version of

the data set used in this paper’s experiment) and the latter consists of a subset of the data

set used in this paper’s experiment (only 343 articles). Stopper words were removed for the

tests, but words were not stemmed.

In their 2005 paper entitled Diffusion Wavelets, Coifman and Maggioni discuss the ap-

plication of wavelet analysis techniques from signal processing to text mining [8]. They

describe a diffusion operator which is similar to the Laplace-Beltrami operator as described

in Section 3. Both techniques relate distance between observations to the number of paths

between the two in a graph based on the closest interpoint distances. They applied a variety

of diffusion operators to the similarity matrix computed from the Science News data set of

1,047 articles and 10,906 unigrams. The resulting embedded space could be used to accu-

rately cluster the documents into their respective categories with k-means and hierarchical

clustering techniques. Detailed results are expected but have not yet been published. This

differs from the research of this project in that they are only analyzing a single approach
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where as this research compares results from five different techniques. Furthermore, the

ultimate goal of this research was LBD rather than clustering.

7.3 Keyword Extraction

In 1994, Efthimiadis evaluated several keyword ranking algorithms [11], focusing particularly

on their use in augmenting search queries with other relevant terms.

He proposed several simple criteria for choosing good keywords. First, words which are

used too often are not very useful. Words which are not used very frequently are good because

they describe a very focused subject well, but these words often restrict the search base too

much since they are rarely found in documents. These rules make words which appear with

about average frequency the best search terms in the eyes of the author. In particular,

these criteria serve search needs well because searches require broad applicability. However,

with regards to the research presented by this paper, infrequent terms may be relatively

more useful since only the very few best matches are considered during the literature-based

discovery process.

In 1999, Anick and Tipirneni developed a tool they called the Paraphrase Search Assistant

[1]. As with Efthimiadis’ work, this tool was designed to augment user’s search queries with

additional relevant terms to help improve the results of the search. Their approach hinges on

the “Lexical Dispersion Hypothesis” which states that “new concepts are often expressed not

as new single words, but as concatenations of existing nouns and adjectives” [1]. Therefore,

if such combinations of existing words can be identified, then the focus of the search can

be used to extract additional keywords which can augment the search. The authors found

that by presenting various combinations of potential augmented searches to users, more

effective searches could be constructed. They also found that using an iterative process

to conduct multiple small searches allowed the user to concentrate the search on keywords

which produced documents of interest.

In 1995, Church and Gale presented inverse-document frequency (IDF) as defined in

Equation 3.1, a quantity which could assist the weighting of terms within a document that

belonged to a particular corpus [5]. In particular, the authors assert that “not all equally
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frequent words are equally meaningful.” For instance, in some corpus the words “somewhat”

and “boycott” may appear equally frequently, but clearly “boycott” is a more significant

term. If the IDF of these terms is considered, the two terms are well separated because

while “somewhat” appears rather evenly over all documents (making its IDF closer to one),

“boycott” is concentrated in only a few documents (makes its IDF closer to zero).

In 1999, Budzik and Hammond proposed a keyword-driven system called an Information

Management Assistant (IMA) [4]. The purpose of this system was to uncover helpful mate-

rials related to the user’s current needs based on observations of the user’s interactions with

software like word processors and web browsers. Based on the content of the user’s actions,

keyword searches on search engines and other databases of information could be executed

to retrieve relevant information. To generate the needed keywords, Budzik and Hammond

considered a number of heuristics for evaluating the relative importance of individual terms

from a single text document:

• The first heuristic suggests that stopper words be removed. As discussed in Section 3.1,

this is also an important part of the encoding process used by this research.

• The second heuristic is to value frequently-used words, which are assumed to be rep-

resentative of the document. This heuristic is helpful with information retrieval, but

it ignores the context of a term’s frequency in the overall corpus.

• Another heuristic suggests that words which appear earlier in the document are more

important. Though this assertion may be true, the encoding process used by this

research only considers word counts. This sort of context-sensitive processing is thus

beyond the scope of this research, but would be an interesting factor to consider in

conjunction with more sophisticated natural language processing techniques.

• Finally, the authors suggest adjusting the weight of words based on their emphasis

in a document as determined by their font size and style. Such techniques were not

considered because the plain text data sets used by this research did not contain any

such formatting.

In 1999, Lagus and Kaski presented a keyword extraction methodology [20]. Unlike
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the keyword extraction done by this research, their work focused on generating keywords

for clusters of documents. These keywords are then used to label groups of documents in

document maps. These maps can be used to generate a graphical layout of document clusters

based on the Self-Organizing Map algorithm [17].
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Chapter 8

Conclusions and Future Work

Section 8.1 synthesizes the results from the classification and LBD experiments described in

Chapter 5 and Chapter 6. Section 8.2 describes the future work which could build on this

research.

8.1 Conclusions

This research evaluated two distinct text mining processes with regards to dimensionality

reduction techniques. The effects of dimensionality reduction on the effectiveness of various

text mining tasks was not well understood prior to this research. The results showed that

dimensionality reduction can be highly effective at improving performance for both classi-

fication and LBD processes. Surprisingly, non-linear techniques did not generally improve

performance over their best linear counterparts.

Though PCA is one of the most commonly used dimensionality reduction techniques,

its performance was inconsistent on text classification. While it did well on easier data

sets like Science News, it struggled on harder data sets like Google News and Science &

Technology. Instead, MDS and Isomap were the best overall techniques for classification.

They consistently performed as well or better than the other techniques.

Literature-Based Discovery was previously explored by Dr. Swanson as a human-supervised

algorithm. Since he first introduced this technique, others have explored semi-automated

LBD approaches. This research developed a fully automated approach based upon a novel
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methodology for scoring candidate LBD discoveries. A novel keyword extraction technique

was also developed to facilitate the requirements of the LBD process. Results showed that

PCA was frequently the best performer on LBD. However, though PCA had the highest me-

dian scores, each DR technique finds different pairs. Thus, performing LBD with multiple

DR techniques uncover different, interesting candidate discoveries.

8.2 Future Work

LBD is a subjective process. Though this research was able to develop an unsupervised

method for estimating the novelty of a particular candidate discovery, the process would also

benefit from a human analysis. Human-based studies of the pairs found by each technique

would help further validate and improve the automated approach.

It would also be interesting to investigate the pairs found by each DR technique for

the LBD process and examine the scores of overlapping pairs. It may be the case that pairs

found by multiple DR techniques are generally better than pairs found by only one technique,

though future research is needed to confirm this hypothesis.

The keyword extraction process is the foundation of the automated scoring methodology.

An improvement on this keyword extraction process would benefit the LBD process as a

whole too. The current algorithm occasionally makes mistakes. In particular, it sometimes

ascribes too much importance to verbs that in fact convey little meaning. As a result, the

algorithm could be improved if each word’s part of speech was considered.

Finally, the current dimensionality reduction pipeline could be improved in several ways.

The algorithms, in particular PCA and LDM, are time-consuming and would benefit from

algorithmic changes which improve efficiency. Also, this work only explored dimensionality

reduction with respect to complete, unchanging data sets. It would be interesting to inves-

tigate ways to insert new documents into the dimensionally reduced space without requiring

the dimensionality reduction process to be run on the entire set of data.
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Appendix A

Glossary

• Association - See Candidate Discovery.

• Candidate Discovery - A pair of documents from disparate categories which are

closely related.

• Classification - This process uses a set of “training data” with known categories to

decide how to assign categories to observations in a “test set.” In effect, the “training

set” is used to gain an understanding what features distinguish observations from each

class.

• Confusion Matrix - These are used to help identify the source of some classification

errors. Each row in the matrix identifies how well a particular category was classified

and where it was classified.

• Corpus - A collection of articles.

• Dimensionality Reduction (DR) - Process of transforming a large amount of data

into a much smaller representation.

• Disparate - Indicates that two things are from different categories (e.g. Chemistry

and Astronomy).

• Dissimilarity Matrix - See Interpoint Distance Matrix.

• Distance Matrix - See Interpoint Distance Matrix.
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• Distance - A measure of how related two documents are. A distance of zero would

indicate that the documents are exactly alike while a larger number would indicate

that the documents are less alike.

• DR - See Dimensionality Reduction.

• Encoding - A matrix representation of a corpus of text documents.

• Feature - A single word in the encoded matrix. The word’s count or weight is a column

in the matrix (each cell defines the number of times the word appears in a particular

document). After dimensionality reduction is applied, features no longer correspond

to words, but are just arbitrary descriptors of each document.

• Interpoint Distance Matrix (IPDM) - A matrix which defines the distance be-

tween all documents in a corpus.

• IPDM - See Interpoint Distance Matrix.

• Isomap - A nonlinear type of Dimensionality Reduction based on geodesic distances

(distances through a nearest neighbors graph).

• Keyword Extraction - The process of finding keywords in a document.

• Keyword - A descriptive term for a document.

• Laplace-Beltrami Diffusion Maps (LDM) - A nonlinear type of Dimensionality

Reduction based on the number of paths between a pair of documents.

• LBD - See Literature-Based Discovery.

• LDM - See Laplace-Beltrami Diffusion Maps.

• Literature-Based Discovery (LBD) - Automatically discovering interesting, pre-

viously unknown relationships between two documents (usually from different cate-

gories).

• LLE - See Locally Linear Embedding.
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• Locally Linear Embedding (LLE) - A nonlinear type of Dimensionality Reduc-

tion which works by translating, rotating, and scaling the data before performing an

Eigenvalue Decomposition.

• MDS - See Multidimensional Scaling.

• Multidimensional Scaling (MDS) - A linear type of Dimensionality Reduction

based on an Eigenvalue Decomposition.

• Noise Words - See Stopper Words.

• PCA - See Principal Components Analysis.

• Principal Components Analysis (PCA) - A linear type of Dimensionality Reduc-

tion based on SVD.

• Stem - The process of finding a word’s root (e.g. “love,” “loved,” and “loving” all

become “lov”).

• Stopper Words - Words which are not encoded because they usually have little

meaning (e.g. “the” or “it”).

• Supervised Method - A method which requires manual tweaking in order to run

(e.g. requires a tuning parameter).

• TDM - See Term-Document Matrix.

• Term-Document Matrix (TDM) - A matrix in which each row corresponds to a

document and each column corresponds to a word. Therefore, each row vector describes

how many times each word appears in a particular document. If weighted with the

TF-IDF formula, then this may be referred to as the Weighted TDM.

• Text Mining - Extraction of important information from a collection of textual data

sources.

• Tuning Parameter - A parameter which is required to adjust how a particular method

processes an input.



103

• Unsupervised Method - A method which does not require manual tweaking in order

to run (e.g. does not require a tuning parameter).

• Weighted Term-Document Matrix - See Term-Document Matrix.
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Appendix B

Supporting Matrix Calculations

B.1 Normalizing Matrices

Many dimensionality reduction techniques normalize their input prior to performing any

calculations. A summary of such normalizations, including centering and scaling, are defined

here.

Input: Matrix M (r × c)

Column-Centering: Subtract the mean of each column from each column. The average

or mean value of column j in M :

M∗,j = avg(M1,j : Mr,j) =

r∑
i=1

Mi,j

r
(B.1)

Let C be the column-centered data from the input matrix M :

Ci,j = Mi,j −M∗,j (B.2)

Row-Centering: Subtract the mean of each row from each row. The average or mean

value of row i in M :

Mi,∗ = avg(Mi,1 : Mi,c) =

c∑
j=1

Mi,j

c
(B.3)
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Let C be the row-centered data from the input matrix M :

Ci,j = Mi,j −Mi,∗ (B.4)

Double-Centering: Subtract the mean value of each row from each row, and each column

from each column. This can be accomplished by applying both the column-centering

Equation B.2 and row centering Equation B.4. Double-centering can also be accom-

plished by the following:

The centering matrix H is an n×n matrix whose values are −n−1 off the diagonal and

1− n−1 on the diagonal. This is defined as:

H = I − n−1 (B.5)

The data M can then be double-centered by the following (let C be the double-centered

data):

C = HMH (B.6)

Scaling: Let the scaled matrix S be the division of each value in M by the root mean

square value of its column. This helps avoid computations with extremely small values

that could otherwise look like dividing by zero to a computer since precision is limited.

These new scaled values in S lie in a computationally satisfactory range. The scaled

value Si,j for Mi,j is computed as follows:

Root mean square of column j in M :

rms(M, j) =

√√√√√√
d∑

i=1

M2
i,j

d− 1
(B.7)
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Scaled value:

Si,j =
Mi,j

rms(M, j)
(B.8)

Scaled and Column-Centered:

Si,j =
Mij −M∗,j

rms(M, j)
(B.9)

B.2 Euclidean Embeddings

A Euclidean embedding utilizes a special kind of distance - Euclidean distance. In general,

distance is defined as how far apart two things are. Though this sounds straightforward,

there are many different ways of defining distance. The only constraints on a distance is that

it is required to be non-negative and symmetric. Euclidean distance, on the other hand, also

expresses linearity. In other words, it is required to satisfy the triangle inequality.

Euclidean embeddings are preferred to other embeddings because of that extra linear-

ity property. The reason linearity is so important is because dissimilarity matrices of Eu-

clidean distances are guaranteed to have positive eigenvalues. As explained in Section 3.2,

eigenvalues and their associated eigenvectors are needed in order to effectively project high

dimensional inputs into low dimensional spaces.

The dissimilarity matrices described in Section 3.1 typically contain negatives and make

no effort to satisfy the triangle inequality in most cases. As a result, they are technically

proximities and not distances. They can be transformed into distances by adding some

constant which translates all the proximities to values greater than or equal to zero, but this

does not guarantee a Euclidean embedding because it is likely that triangle inequalities are

not met.

However, a standard procedure exists to embed a non-Euclidean symmetric matrix into

a Euclidean space. There always exists some constant c large enough that when added to

all the distances, the triangle inequality is satisfied [3]. There is a procedure for computing

the smallest possible constant c which can be added and still coerce all the distances in the

matrix to satisfy the triangle inequality. The smallest possible c is desirable because as c
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grows, the number of dimensions needed to represent the data grows too.

A matrix can be embedded in a Euclidean space as follows:

Input: Symmetric Matrix M (n× n)

1) Construct the 2n× 2n supermatrix S:

Let D contain the squared values from the double-centering of matrix M as defined by

Equation B.6.

S =

 0 2D

−I −4M

 (B.10)

2) Determine the minimum constant c: Perform an eigenvalue decomposition of S and find

the largest real eigenvalue. The value of that eigenvalue is the minimal constant c.

3) Compute M∗, the n× n Euclidean embedding of the input matrix M :

Let H be the centering matrix defined by Equation B.5 for the number of rows n.

M∗ = M + 2cD +
c2

2
H (B.11)
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Appendix C

Experimental Support Information

C.1 Stopper Words List

Table C.1: Stopper Words
a clearly generally later open sees turn
about come get latest opened several turned
above concentrated gets least opening shall turning
across concentration give less opens she turns
after concentrations given let or should two
again could gives lets order show u
against d go like ordered showed under
all develop going likely ordering showing until
all developed good long orders shows up
almost developing goods longer other side upon
alone develops got longest others sides us
along did great ltd our since use
already differ greater m out small use
also different greatest made over smaller used
although differently group make p smallest used
always do grouped making paper so uses
among does grouping man papers some uses
an done groups many part somebody using
and down h mass parted someone v
another down had may parting something very
any downed has me parts somewhere w
anyone downs having members perhaps states wanted
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Table C.2: Stopper Words, cont.
anything during he men place still wanting
anywhere e her method places still wants
are each here methods point studied was
area early herself might pointed studies way
areas effect high mol pointing study ways
around effected high more points studying we
as effecting high most possible such well
ask effects higher mostly present sure wells
asked either highest mr presented system went
asking elsevier him mrs presenting systems were
asks elseviers himself much presents t what
at end his must problem take when
away ended how my problems taken where
b ending however myself put technique whether
back ends i n puts techniques which
backed enough if necessary q test while
backing even important need quite tested who
backs evenly in needed r testing whole
be ever inc needing rather tests whose
became every increase needs really than why
because everybody increased never reserved that will
become everyone increases new result the with
becomes everything increasing new resulted their within
been everywhere interest newer resulting them without
before f interested newest results then work
began face interesting next right there worked
behind faces interests no right therefore working
being fact into nobody rights these works
beings facts is non room they would
best far it noone rooms thing x
better felt its not s things y
between few itself nothing said think year
big find j now same thinks years
both finds just nowhere sample this yet
but first k number sampled those you
by for kcal numbers samples though young
c four keep o sampling thought younger
came from keeps of saw thoughts youngest
can full kind off say three your
cannot fully knew often says through yours
cause further know old second thus z
caused furthered known older seconds to
causes furthering knows oldest see today
causing furthers l on seem together
certain g large once seemed too
certainly gave largely one seeming took
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C.2 Sample Article

The Best of SCIENCE NEWS

January 27, 1996

MEDICAL SCIENCES

Olestra: Too good to be true? Researchers flush out health risks of fake fat.

By KATHLEEN FACKELMANN

The dream of a guiltfree potato chip may be crumbling. Olestra, the fat substitute that

tastes like the rich stuff but has zero calories, has been known to cause diarrhea, cramping,

and other nasty side effects in some people. Now, scientists have added more serious health

risks to that list.

Olestra is the brainchild of Procter and Gamble, the Cincinnati-based company that holds

the patent on this artificial fat, which it calls Olean. But Procter and Gamble needs the

Food and Drug Administration’s approval before it can market a line of olestra-containing

snacks such as potato chips, tortilla chips, and crackers.

In November, olestra passed muster with two panels assigned by FDA to review the

scientific evidence. At press time, the decision rested with FDA Commissioner David Olestra:

Too good to be true? Researchers flush out health risks of fake fat.

Ordinarily, a product that sails through two levels of FDA review would almost certainly

win Kessler’s stamp of approval. However, the growing chorus of opposition to olestra may

change the situation.

The beauty of olestra, a synthetic mixture of sugar and vegetable oil, is that it passes

through the body without being digested or absorbed. Potato chips that contain the no-cal

olestra end up having less than half the calories and none of the fat contained in regular chips.

Olestra’s ability to pass through the body intact poses a danger, however. Researchers say

olestra binds and helps flush away certain key nutrients believed to protect against chronic

diseases.

”The public needs to know more about olestra,” says Walter C. Willett, an epidemiologist

at the Harvard School of Public Health in Boston. Willett helped organize a scientific meeting

on olestra held there last week. ”The public is being asked by Procter and Gamble and the
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FDA advisory committee to participate in a vast, uncontrolled national experiment,” Willett

says. He adds that olestra products, if approved, would be consumed by many people,

including children, without adequate safety studies.

Procter and Gamble agrees that olestra helps carry away fat-soluble vitamins such as A,

D, E, and K. Indeed, the firm plans to add those vitamins to snack foods containing olestra.

But the fake fat would also sweep out of the body nutrients called carotenoids, the yellow,

orange, or red pigments found in many fruits and vegetables. There are about 500 nutrients

in the carotenoid family–too many to add back to a bag of chips. Yet some carotenoids are

thought to shield people against a wide range of diseases, including an eye condition and

prostate cancer.

From data generated by Procter and Gamble, epidemiologist Meir J. Stampfer estimated

that people who ate just three small olestra-containing snacks per week could expect at least

a 10 percent drop in concentrations of carotenoids in their blood. He described the potential

impact of such carotenoid reduction at the Boston meeting.

Stampfer, also at the Harvard School of Public Health, turned his attention first to age-

related macular degeneration, a disorder that causes blurry vision and blindness. In 1994,

a Boston team provided compelling evidence that two carotenoids, lutein and zeaxanthin,

help prevent this devastating disorder (SN: 11/12/94, p. 310).

A 10 percent drop in concentrations of lutein and zeaxanthin would result in 390 to 800

additional cases of macular degeneration per year in the United States, Stampfer estimates.

Prostate cancer may also be prevented with a diet rich in certain carotenoids. At last

week’s meeting, Edward Giovannucci of Harvard Medical School in Boston presented data

showing that lycopene, a carotenoid found in tomato-based products, may help protect men

from developing cancer of the prostate, the nut-sized gland surrounding the urethra.

Calculations by Stampfer showed that olestra snacking could lead to 2,400 to 9,800 ad-

ditional cases of prostate cancer each year.

Evidence from dietary studies has linked fruits and vegetables containing carotenoids to

protection from heart disease and cancer. The most recent studies on a particular carotenoid,

beta carotene, taken in supplement form, did not report such protection (see p. 55). If

further studies strengthen the link, however, Stampfer calculates that a 10 percent drop in
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carotenoids could cause 32,000 extra deaths in the United States per year.

Stampfer is the first to admit that scientists have yet to prove conclusively that carotenoids

protect against such diseases. But if olestra is approved and further research does confirm

the tie, ”we’re in for some serious consequences.”

Procter and Gamble’s Greg Allgood says the scientific evidence on carotenoids is not

persuasive. He points to the two large studies that panned the ability of beta carotene to

stave off cancer or heart disease.

Allgood says such results cast doubt on the entire lot of carotenoids, not just beta

carotene.

According to Procter and Gamble, ”it is not possible to conclude that a reduction in

serum carotenoid concentration will present a public health concern.”

Stampfer calls the company’s focus on beta carotene alone a ”smokescreen,” adding that

researchers have gathered proof that several other carotenoids protect human health. Future

research may uncover still more with disease prevention prowess, he says.

The two FDA panels assigned to review olestra agreed with Procter and Gamble’s favor-

able assessment. FDA spokesperson Brad Stone says that the majority of panel members

were reasonably certain that no harm would result from approval.

One panel member who did object to the majority view said, ”I don’t think the advisory

panel was objective from the beginning.” Joan Gussow went on to tell Science News that

some of the experts who spoke before the panel were consultants to Procter and Gamble but

did not clearly identify themselves as such.

Stampfer also disagreed with the FDA panel. He says that Procter and Gamble’s own

studies show the drop in carotenoids; therefore, olestra is likely to be harmful.

Whether Procter and Gamble wins FDA approval or not, many consumers may still

want the fake fat chips, despite their gastrointestinal side effects and the risk of carotenoid

depletion. The scientific opposition to olestra, however, is unlikely to melt away.
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C.3 Experiment Runner Manual

Dound Quick Runner 
How to Use: v1.17 

 
usage  java -jar DoundQRunner.jar [<options>] 
 
Runs the specified classification experiment and records results to the console.  The 
following files also get results  
 File Prefix: YYYY-MM-DD—INPUT_SRC-DR_TYPE-DISSIM_COMP-DIST_METRIC-MIND-MAXD-MINDRK-

MAXDRK-CLASSIFIER[MINK,MAXK]-VALIDATION_TYPE. 
 
 Extensions: .res => results .cm => confusion matrices .eigs => eigenvalues 
   .dat => TDM/IPDM .pts => 3-D points  
 
Input Switches  
 
-?, --help display this usage information 
 
-d, --dr_type=TYPE specify the type of DR to do (all, pca, mds, lle, 

isomap, lafon, none, or alln)  [default=all] 
 
-i, --input_source=NAME name of the corpus to work with  [default=ScienceNews] 
 
-dist, --distance_metric=METRIC distance type: euclid, or cos  [default=cos] 
 
-dc, --dissim_comp=TYPE dissimilarity type: raw, scaled, or exp [default=raw] 
 
-mind, --min_dimensions=INT min # of dimensions to test  [default=30] 
 
-maxd, --max_dimensions=INT max # of dimensions to test  [default=30] 
 
-C, --classifier=TYPE either knn, linear, or quad  [default=knn] 
 
-mink, --min_classifier_k=INT min # of knn neighbors to test  [default=9] 
 
-maxk, --max_classifier_k=INT max # of knn neighbors to test  [default=9] 
 
-mindrk, --min_dr_neighbors=INT min # of neighbors to use in Isomap/LLE  [default=10] 
 
-maxdrk, --max_dr_neighbors=INT max # of neighbors to use in Isomap/LLE  [default=10] 
 
-e, --embed embed input in a Euclidean space 
 
-l, --leave_one_out do leave-one-out vice 2-fold cross-validation 
 

 
Output Switches 
 
-c, --output_to_console only output to the console (no file logging) 
 
-D, --print_ipdm print the IPDM to the .dat file 
 
-E, --print_eigvals print eigenvalues of the decomposition to the .eig 

file 
 
-M, --print_cm print the confusion matrices to the .cm file 
 
 
-P, --print_points print truncated points (and their categories) of the 

decomposition to the .pts file 
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C.4 Groups Encoder Manual

Dound Corpus Grouping 
       How to Use: v1.00

 
usage: java -jar dound-grouper.jar PATH [<options>] 
 
Groups documents in a corpus into a specified number of randomly generated 
groups which can be constrained to ensure an even distribution of documents 
in each category across all groups. 
 
Order of arguments is unimportant (other than PATH, which must come first).  
All switches which set values expect the next argument to be the value 
assigned to the parameter designated by the switch. 
 
 
Switches: 

 
 -n, --name=NAME  name of the group set (will be used as the filename 

if nothing else is specified). 
 
 
 -o, --output_fn=FILENAME where to save the group set. 

 
 
 -e, --dont_equalize  do not equalize the groups so that each has the same 

number of documents from each category.   
[default=do equalize] 

 
 
 -g, --num_groups=INTEGER  number of groups to divide the documents up into  

[default=2] 
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C.5 Corpus Encoder Manual

Dound Text Encoding 
      How to Use: v1.10

 
usage: java -jar Dound.jar PATH1 [path2] [pathN] [<options>] 
 
Computes the dissimilarity matrix, term-document matrix (TDM), or weighted TDM as 
specified from the documents in the specified paths. 
 
Order of arguments is unimportant. You may specify as many paths to load documents from 
as you like. All switches which set values expect the next argument to be the value 
assigned to the parameter designated by the switch. 
 
 
Input Switches: 
 
-conf, --config=FILENAME  configuration is loaded from the specified file; all 

other options are ignored; input paths may be added 
 
-R, --recursive  look in paths recursively for files 
 
-r, --recursive_depth  set how deep to recursively look for files (-1 means 

no limit and is equivalent to -R)  [default=0] 
 
-sp, --supress_config_paths  do not input from any paths saved in the loaded 

configuration. Only applies if -conf is specified. 
 
 
Output Switches: 
 
-c, --console=VERBOSITY_LEVEL  how much to log to standard out. Ranges from 0 (none) 

to 4 (verbose). 1=status reports. 2=dissimilarity 
matrix only. 3=combination of 1 and 2.  [default=2] 

 
-F, --format=FORMAT  how to format numbers; printf style [default=%.7f] 
 
-f, --file_prefix=PREFIX  prefix of the files to log to; old files in the way 

are renamed. $C will be replaced by abbreviated 
configuration info. [default=no file logging] 

 
-S, --separator=STRING  how printed items are separated (`space` will be 

interpreted as a space character)  [default:tab] 
 
-sr, --show_rows  print row numbers on the dissimilarity matrix 
 
-s, --sort  sort documents in ascending order 
 
-T, --terms  log terms in the corpus if a file prefix is set 
 
-v, --verbose  enable verbose logging to files 

 
 
End-Goal Output Switches: (will print to standard out or the specified file) 
 
note: by default, a dissimilarity matrix is computed 
 
-tdm, --term_doc_matrix  compute the term-document matrix (word counts) 
 
-tdmw, --term_doc_matrix_weighted  compute the weighted term-document matrix 
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Configuration Switches: 
 
-dc, --dissimilarity_comp=TYPE  how to use the specified distance metric to compute          

dissimilarity: `RawDistance` (use metric as is), 
`Scaled Distance` (c-c*dist/max_dist)^(1/c) where c 
is the specified coefficient (usually 1 or 2), 
`ExpOfNegDistance` (e^-dist), or `WordCountScaled 
Distance` (dist/sqrt(#ofWordsInDoc1*#ofWordsInDoc2). 

  [default=RawDistance] 
 
-C, --coefficient=DOUBLE coefficient for the `ScaledDistance` dissimilarity 

computer [default=1.0] 
 
-dist, --distance_comp_type=TYPE distance metric to use in the dissimilarity computer 

type, either: `DistanceCosineEnMass` (efficiently 
computes cosine distances [advisable in text mining]) 
or `DistanceEuclidean`  

 [default=DistanceCosineEnMass] 
 
-l, --min_word_length=INTEGER  minimum # of characters in a word  [default=1] 
 
-m, --min_words=INTEGER set the min/max n-Gram size 
-M, --max_words=INTEGER  [default=1,1 (unigrams)] 
 
-ns, --no_stem  turns stemming off  [default=stemming on] 
 
-sf, --stopper_file=FILENAME  the file to get stopper words from  [default: none] 
 
-t, --threshold=DOUBLE  sets the weight threshold to keep words  [default=0.0] 
 
-w, --doc_weighter=WEIGHTER_TYPE how to weight words in documents, either `tfidf` 

(uses the term-frequency inverse-document-frequency 
formula), `counts` (n-gram counts), or `bincounts` 
(uses whether or not an n-gram appears in a document 
[0s and 1s]) [default=tfidf] 

 
 
-wf, --word_format=INTEGER what constitutes a word (0=alphanumeric or numeric, 

1=alphanumeric, 2=letters only)  [default=1] 
 
 
 

Word Usage Configuration Switches: 
 
* = of documents a word must/may be used in to be considered (i.e. not thrown out) 
 
-mu, --min_usages=INTEGER  minimum/maximum [default=1] 
-Mu, --max_usages=INTEGER   number * [default=0=no limit] 
 
-mup, --min_usages_percent=DOUBLE  minimum/maximum  [default=0.0] 
-Mup, --max_usages_percent=DOUBLE   percentage * [default=1.0=100%=no max] 
 
-mf, --min_freq=DOUBLE  minimum/maximum frequency a word  [default=0.0] 
-Mf, --max_freq=DOUBLE   must appear in the corpus  [default=0.0=no maximum] 

 
 
clarification: 

frequency  a word's total # of appearances  / # docs in corpus 
usages percent  # of docs a word appears in      / # docs in corpus 
usages  # of docs a word appears in 
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